当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2015-2016学年浙江省宁波市南三县九年级上学期期末数学...

更新时间:2017-01-04 浏览次数:1501 类型:期末考试
一、选择题
二、填空题
三、解答题
  • 19. (2016九上·宁波期末) 计算:(sin30°﹣1)2 ×sin45°+tan60°×cos30°.
  • 20. (2021九上·杭州期中) 已知二次函数的图象经过点(0,﹣3),且顶点坐标为(﹣1,﹣4).
    1. (1) 求该二次函数的解析式;
    2. (2) 设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.
  • 21. (2016九上·宁波期末) 如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.

    1. (1) 求证:BE=CE;
    2. (2) 若BD=2,BE=3,求AC的长.
  • 22. (2016九上·宁波期末) A、B两地相距20km,B在A的北偏东45°方向上,一森林保护中心P在A的北偏东30°和B的正西方向上,现计划修建的一条高速公路将经过AB(线段),已知森林保护区的范围在以点P为圆心,半径为4km的圆形区域内,请问这条高速公路会不会穿越保护区?为什么?(sin15°=0.259,cos15°=0.966,tan15°=0.268)

  • 23. (2016九上·宁波期末) 有两个可以自由转动的均匀转盘A、B,都被分成了3等份,并在每份内均标有数字,如图所示,规则如下:

    ①分别转动转盘A、B.

    ②两个转盘停止后,将两个指针所指份内的数字相乘(若指针停在等分线上,那么重转一次,直到指针指向某一份为止).

    1. (1) 用列表法(或树状图)分别求出数字之积为3的倍数和为5的倍数的概率;
    2. (2) 小亮和小芸想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小亮得2分;数字之积为5的倍数时,小芸得3分.这个游戏对双方公平吗?请说明理由;认为不公平的,试修改得分规定,使游戏双方公平.
  • 24. (2016九上·宁波期末) 某商品公司为指导某种应季商品的生产和销售,在对历年市场行情和生产情况进行调查基础上,对今年这种商品的市场售价和生产成本进行了预测并提供了两个方面的信息:如图(1)(2).

    注:两图中的每个实心黑点所对应的纵坐标分别指相应月份一件商品的售价和成本,生产成本6月份最高;图(1)的图象是线段,图(2)的图象是抛物线.

    1. (1) 在3月份出售这种商品,一件商品的利润是多少?
    2. (2) 设t月份出售这种商品,一件商品的成本Q(元),求Q关于t的函数解析式.
    3. (3) 设t月份出售这种商品,一件商品的利润W(元),求W关于t的函数解析式.
    4. (4) 问哪个月出售这种商品,一件商品的利润最大?简单说明理由.
  • 25. (2016九上·宁波期末) 基本模型:如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE~△BCF.

    1. (1) 模型拓展:如图2,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE~△BCF;
    2. (2) 拓展应用:如图3,AB是半圆⊙O的直径,弦长AC=BC=4 ,E,F分别是AC,AB上的一点,若∠CFE=45°,若设AE=y,BF=x,求y与x的函数关系式.
  • 26. (2016九上·宁波期末)

    如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动,已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(x>0).

    1. (1) △EFG的边长是(用含有x的代数式表示),当x=2时,点G的位置在

    2. (2) 若△EFG与梯形ABCD重叠部分面积是y,求y与x之间的函数关系式;

    3. (3) 探究(2)中得到的函数y在x取何值时,存在最大值?并求出最大值.

微信扫码预览、分享更方便

试卷信息