当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2016年四川省成都市武侯区中考数学二诊试卷

更新时间:2017-02-05 浏览次数:1383 类型:中考模拟
一、选择题
二、填空题
三、解答题
  • 15. (2016·武侯模拟) 计算下面各题
    1. (1) 计算: +(﹣1)2﹣4cos30°﹣| |
    2. (2) 解不等式组 ,并将它的解集在下面的数轴上表示出来.

  • 16. (2016·武侯模拟) 先化简,再求值:(1﹣ )÷ ,其中a=
  • 17. (2016·武侯模拟) 在如图所示的平面直角坐标系中,△ABC的三个顶点都在小正方形的顶点处,请结合图完成下列各题:

    1. (1) 填空:tan∠ABC=;AB=(结果保留根号).
    2. (2) 将△ABC绕原点O旋转180°,画出旋转对应的△A′B′C′,并求直线A′C′的函数表达式.
  • 18. (2016·武侯模拟) 如图,在菱形ABCD中,E、F分别是AB和BC上的点,且BE=BF.

    1. (1) 求证:△ADE≌△CDF;
    2. (2) 若∠A=40°,∠DEF=65°,求∠DFC的度数.
  • 19. (2016·武侯模拟) 全面二孩政策定于2016年1月1日正式实施,武侯区某年级组队该年级部分学生进行了随机问卷调查,其中一个问题是“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):

    A.非常愿意  B.愿意  C.不愿意  D.无所谓

    如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:

    1. (1) 试问本次问卷调查一共调查了多少名学生?并补全条形统计图;
    2. (2) 若该年级共有300名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?
    3. (3) 在年级活动课上,老师决定从本次调查回答“非常愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“非常满意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.
  • 20. (2016·武侯模拟) 如图1,△ABC内接于⊙O,∠BAC的平分线AD交⊙O于点D,交BC于点E,过点D作DF∥BC,交AB的延长线于点F.

    1. (1) 求证:△BDE∽∠ADB;
    2. (2) 试判断直线DF与⊙O的位置关系,并说明理由;
    3. (3) 如图2,条件不变,若BC恰好是⊙O的直径,且AB=6,AC=8,求DF的长.

四、填空题
五、解答题
  • 26. (2016·武侯模拟) 成都地铁规划到2020年将通车13条线路,近几年正是成都地铁加紧建设和密集开通的几年,市场对建材的需求量有所提高,根据市场调查分析可预测:投资水泥生产销售后所获得的利润y1(万元)与投资资金量x(万元)满足正比例关系y1=20x;投资钢材生产销售的后所获得的利润y2(万元)与投资资金量x(万元)满足函数关系的图象如图所示(其中OA是抛物线的一部分,A为抛物线的顶点,AB∥x轴).

    1. (1) 直接写出当0<x<30及x>30时,y2与x之间的函数关系式;
    2. (2) 某建材经销公司计划投资100万元用于生产销售水泥和钢材两种材料,若设投资钢材部分的资金量为t(万元),生长销售完这两种材料后获得的总利润为W(万元).

      ①求W与t之间的函数关系式;

      ②若要求投资钢材部分的资金量不得少于45万元,那么当投资钢材部分的资金量为多少万元时,获得的总利润最大?最大总利润是多少?

  • 27. (2016·武侯模拟)

    如图,在矩形ABCD中,P为AD上一点,连接BP,CP,过C作CE⊥BP于点E,连接ED交PC于点F.

    1. (1) 求证:△ABP∽△ECB;

    2. (2) 若点E恰好为BP的中点,且AB=3,AP=k(0<k<3).

      ①求 的值(用含k的代数式表示);

      ②若M、N分别为PC,EC上的任意两点,连接NF,NM,当k= 时,求NF+NM的最小值.

  • 28. (2016·武侯模拟)

    如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣10ax+16a(a≠0)交x轴于A、B两点,抛物线的顶点为D,对称轴与x轴交于点H,且AB=2DH.

    1. (1) 求a的值;

    2. (2) 点P是对称轴右侧抛物线上的点,连接PD,PQ⊥x轴于点Q,点N是线段PQ上的点,过点N作NF⊥DH于点F,NE⊥PD交直线DH于点E,求线段EF的长;

    3. (3) 在(2)的条件下,连接DN、DQ、PB,当DN=2QN(NQ>3),2∠NDQ+∠DNQ=90°时,作NC⊥PB交对称轴左侧的抛物线于点C,求点C的坐标.

微信扫码预览、分享更方便

试卷信息