当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2016-2017学年浙江省杭州市萧山区城北片九年级上学期期...

更新时间:2024-07-12 浏览次数:1365 类型:期中考试
一、仔细选一选
二、认真填一填
三、全面答一答
  • 17. (2020九上·杭州期中)

    小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.

    1. (1) 请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).

    2. (2) 在△ABC中,AC=4米,∠ABC=45°,试求小明家圆形花坛的半径长.

  • 18. (2016九上·萧山期中) 在1个不透明的口袋里,装有红、白、黄三种颜色的乒乓球(除颜色外,其余都相同),其中有白球2个,黄球1个,若从中任意摸出一个球,这个球是白色的概率为0.5.
    1. (1) 求口袋中红球的个数;
    2. (2) 若摸到红球记0分,摸到白球记1分,摸到黄球记2分,甲从口袋中摸出一个球,不放回,再找出一个画树状图的方法求甲摸的两个球且得2分的概率.
  • 19. (2021九上·嵊州期中) 如图,AB是⊙O的直径,C、D两点在⊙O上,若∠C=45°,

    1. (1) 求∠ABD的度数.
    2. (2) 若∠CDB=30°,BC=3,求⊙O的半径.
  • 20. (2016九上·萧山期中) 如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)

    1. (1) 求m的值及抛物线的顶点坐标.
    2. (2) 点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
  • 21. (2016九上·萧山期中) 已知:如图,在半径为2的半圆O中,半径OA垂直于直径BC,点E与点F分别在弦AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与A、B重合.

    1. (1) 求四边形AEOF的面积.
    2. (2) 设AE=x,SOEF=y,写出y与x之间的函数关系式,求x取值范围.
  • 22. (2016九上·萧山期中) 某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.
    1. (1) 求y关于x的函数表达式;
    2. (2) 景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.
  • 23. (2016九上·萧山期中)

    如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.

    1. (1) 求该抛物线的函数表达式;

    2. (2) 已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;

    3. (3) 在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.

      ①写出点M′的坐标;

      ②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2 , 当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).

微信扫码预览、分享更方便

试卷信息