微信群数量 | 频数 | 频率 |
0至5个 | 0 | 0 |
6至10个 | 30 | 0.3 |
11至15个 | 30 | 0.3 |
16至20个 | a | c |
20个以上 | 5 | b |
合计 | 100 | 1 |
(Ⅰ)求a,b,c的值;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;
(Ⅲ)以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望EX.
(Ⅰ)求证:CD⊥平面P'AC;
(Ⅱ)求二面角A﹣P'D﹣C的余弦值;
(Ⅲ)线段P'A上是否存在点M,使得BM∥平面P'CD.若存在,指出点M的位置并证明;若不存在,请说明理由.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点P(1,0)的直线(不与坐标轴垂直)与椭圆交于A、B两点,设点B关于x轴的对称点为B'.直线AB'与x轴的交点Q是否为定点?请说明理由.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对任意x1 , x2∈[0,2],f(x1)≥g(x2)恒成立,求a的取值范围.
(Ⅰ)写出一个含有集合{1,2}的“向下封闭”的子集族D并计算此时 的值(其中|A|表示集合A中元素的个数,约定|ϕ|=0; 表示对子集族D中所有成员A求和);
(Ⅱ)D是集合{1,2,3…n}的任一“向下封闭的”子集族,对∀A∈D,记k=max|A|, (其中max表示最大值),
(ⅰ)求f(2);
(ⅱ)若k是偶数,求f(k).