当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年广东省韶关市高考数学模拟试卷(理科)(1月份)

更新时间:2017-03-15 浏览次数:851 类型:高考模拟
一、在每小题给出的四个选项中,只有一项是符合题目要求的.
二、填空题
三、解答题:
  • 17. (2016·韶关模拟) 如图,在△ABC中,M是边BC的中点,tan∠BAM= ,cos∠AMC=﹣

    (Ⅰ)求角B的大小;

    (Ⅱ)若角∠BAC= ,BC边上的中线AM的长为 ,求△ABC的面积.

  • 18. (2016·韶关模拟) 已知四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∠ABC=60°,E是BC中点,M是PD上的中点,F是PC上的动点.

    (Ⅰ)求证:平面AEF⊥平面PAD

    (Ⅱ)直线EM与平面PAD所成角的正切值为 ,当F是PC中点时,求二面角C﹣AF﹣E的余弦值.

  • 19. (2016·韶关模拟) 随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出1吨该商品可获利润0.5万元,未售出的商品,每1吨亏损0.3万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如右图所示.已知电商为下一个销售季度筹备了130吨该商品.现以x(单位:吨,100≤x≤150)表示下一个销售季度的市场需求量,T(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.

    (Ⅰ)视x分布在各区间内的频率为相应的概率,求P(x≥120)

    (Ⅱ)将T表示为x的函数,求出该函数表达式;

    (Ⅲ)在频率分布直方图的市场需求量分组中,以各组的区间中点值(组中值)代表该组的各个值,并以市场需求量落入该区间的频率作为市场需求量取该组中值的概率(例如x∈[100,110),则取x=105,且x=105的概率等于市场需求量落入100,110)的频率),求T的分布列及数学期望E(T).

  • 20. (2016·韶关模拟) 设椭圆C: =1(a>b>0),椭圆C短轴的一个端点与长轴的一个端点的连线与圆O:x2+y2= 相切,且抛物线y2=﹣4 x的准线恰好过椭圆C的一个焦点.

    (Ⅰ)求椭圆C的方程;

    (Ⅱ)过圆O上任意一点P作圆的切线l与椭圆C交于A,B两点,连接PO并延长交圆O于点Q,求△ABQ面积的取值范围.

  • 21. (2016·韶关模拟) 已知函数f(x)=aex(a≠0),g(x)=x2

    (Ⅰ)若曲线c1:y=f(x)与曲线c2:y=g(x)存在公切线,求a最大值.

    (Ⅱ)当a=1时,F(x)=f(x)﹣bg(x)﹣cx﹣1,且F(2)=0,若F(x)在(0,2)内有零点,求实数b的取值范围.

  • 22. (2017高三上·韶关期末) 在直角坐标系xOy中,曲线C的参数方程为 (α为参数).以点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ﹣ )=2

    (Ⅰ)将直线l化为直角坐标方程;

    (Ⅱ)求曲线C上的一点Q 到直线l 的距离的最大值及此时点Q的坐标.

  • 23. (2016·韶关模拟) 已知函数f(x)=|x+m|+|2x﹣1|(m∈R)

    (I)当m=﹣1时,求不等式f(x)≤2的解集;

    (II)设关于x的不等式f(x)≤|2x+1|的解集为A,且[ ,2]⊆A,求实数m的取值范围.

微信扫码预览、分享更方便

试卷信息