当前位置: 初中数学 /人教版(2024) /九年级上册 /第二十三章 旋转 /本章复习与测试
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

人教版九年级数学上册 第23章 旋转 单元检测d卷

更新时间:2021-05-20 浏览次数:298 类型:单元试卷
一、选择题
  • 1. 如图,△ABC绕点A旋转至△AEF,其旋转角是(    )

    A . ∠BAE B . ∠CAE C . ∠EAF D . ∠BAF
  • 2. (2023九上·太和期中) 在平面直角坐标系中,点 与点 关于原点对称,则点 的坐标为(    ).
    A . B . C . D .
  • 3. 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=4 ,BC的中点为D.将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG.在旋转过程中,DG的最大值是(    )

    A . 4 B . 6 C . 2+2 D . 8
  • 4. 如果两个图形可通过旋转而相互得到,则下列说法中正确的有( ).

    ①对应点连线的中垂线必经过旋转中心.

    ②这两个图形大小、形状不变.

    ③对应线段一定相等且平行.

    ④将一个图形绕旋转中心旋转某个定角后必与另一个图形重合.

    A . 1个 B . 2个 C . 3个 D . 4个
  • 5. 在平面直角坐标系中,把点P(﹣5,3)向右平移8个单位得到点P1 , 再将点P1绕原点旋转90°得到点P2 , 则点P2的坐标是(    )
    A . (3,-3) B . (3,3) C . (3,3)或(-3,-3) D . (3,-3)或(-3,3)
  • 6. (2022·龙岗模拟) 如图,边长为2的正方形ABCD的对角线相交于点O,过点O的直线分别交边AD、BC于E、F两点,则阴影部分的面积是(  )

    A . 1 B . 2 C . 3 D . 4
  • 7. 如图,如果正方形ABCD旋转后能与正方形CDEF重合,那么图形所在平面内,可作为旋转中心的点个数(    )

    A . 1个 B . 2个 C . 3个 D . 4个
  • 8.

    如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是(   )

    A . ,1) B . (1,﹣ C . (2 ,﹣2) D . (2,﹣2
  • 9. 在下列现象中:①时针转动,②电风扇叶片的转动,③转呼啦圈,④传送带上的电视机,其中是旋转的有(  )

    A . ①② B . ②③ C . ①④ D . ③④
  • 10. 我们知道,国旗上的五角星是旋转对称图形,它需要旋转多少度后才能与自身重合?(   )
    A . 36° B . 60° C . 45° D . 72°
  • 11. 如图,O是等边△ABC内的一点,OB=1,OA=2,∠AOB=150°,则OC的长为(    )

    A . B . C . D . 3
  • 12. (2019·锡山模拟) 如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为(   )


    A . (-a,-b) B . (-a,-b-1) C . (-a,-b+1) D . (-a,-b+2)
二、填空题
三、解答题
  • 19. 如图,作出△ABC关于点O成中心对称的三角形.(保留作图痕迹)


  • 20. (2022八下·宝鸡期中) 如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.

    1. (1) 指出它的旋转中心;
    2. (2) 说出它的旋转方向和旋转角是多少度;
    3. (3) 分别写出点A,B,C的对应点.
  • 21. 如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转后所得的图形.

    1. (1) 在图中标出旋转中心P的位置,并写出它的坐标;
    2. (2) 在图上画出再次旋转后的三角形④.
  • 22. (2017九上·南涧期中) 如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.

    1. (1) 求证:△BCF≌△BA1D.
    2. (2) 当∠C=α度时,判定四边形A1BCE的形状并说明理由。
  • 23. (2020九上·庆阳月考) 如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.

    1. (1) 求证:△BDE≌△BCE;
    2. (2) 试判断四边形ABED的形状,并说明理由.
  • 24. 如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.

    1. (1) 求证:△COD是等边三角形;
    2. (2) 当a=150°时,试判断△AOD的形状,并说明理由;
    3. (3) 探究:当a为多少度时,△AOD是等腰三角形?
  • 25. 如图,△ABC三个顶点的坐标分别是A(1,1),B(4,2),C(3,4).

    1. (1) 请画出△ABC向左平移5个单位长度后得到的△A1B1C1
    2. (2) 请画出△ABC关于原点对称的△A2B2C2
    3. (3) 在x轴上求作一点P,使△PAB周长最小,请画出△PAB,并直接写出点P的坐标.
  • 26. 如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.

    1. (1) 继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;
    2. (2) 再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;
    3. (3) 连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?

微信扫码预览、分享更方便

试卷信息