当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省瑞安市五校2017届九年级上学期数学期中联考试卷

更新时间:2024-07-31 浏览次数:266 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 16. (2016九上·瑞安期中) 已知△ABC顶点都在4×4的正方形网格格点上,如图所示.

    1. (1) 请画出△ABC的外接圆,并标明圆心O的位置;
    2. (2) 这个圆中弦BC所对的圆周角的度数是. 
  • 17. (2016九上·瑞安期中) 如图,均匀的正四面体的各面依次有1,2,3,4四个数字,小明做了60次投掷试验,结果统计如下:

    朝下数字

    1

    2

    3

    4

    出现的次数

    16

    20

    14

    10

    1. (1) 计算上述试验中“4朝下”的频率;
    2. (2) “根据试验结果,投掷一次正四面体,出现数字2朝下的概率是 ”,这种说法正确吗?为什么?
  • 18. (2021九上·北仑期中) 已知:如图,AB,AC是⊙O的两条弦,AO平分∠BAC.

    求证:

  • 19. (2016九上·瑞安期中) 如图,抛物线 轴相交于点A、B,且过点C(4,3).

    1. (1) 求 的值和该抛物线顶点P的坐标;
    2. (2) 将该抛物线向左平移,记平移后抛物线的顶点为P′,当四边形AP′PB为平行四边形时,求平移后抛物线的解析式.
  • 20. (2019九上·宁波期中) 为了在校体育节的排球比赛上取得好成绩,甲、乙、丙、丁四人一起训练传接球.传接球规则如下:接球者把球随机传给另外三人中的一人.现由甲开始传球,请回答下列问题(假设每次传球都能接到球):
    1. (1) 写出第一次接球者是乙的概率;
    2. (2) 用列表或画树状图的方法求第二次接球者是甲的概率.
  • 21. (2016九上·瑞安期中) 如图是一种窗框的设计示意图,矩形ABCD被分成上下两部分,上部的矩形CDFE由两个正方形组成,制作窗框的材料总长为6m.

    1. (1) 若AB为1m,直接写出此时窗户的透光面积m2
    2. (2) 设AB=x,求窗户透光面积S关于x的函数表达式,并求出S的最大值.
  • 22. (2016九上·瑞安期中) 如图,在△ABC中,AB=AC,以AB为直径的半圆分别交AC,BC边于点D,E,连接BD,

    1. (1) 求证:点E是 的中点;
    2. (2) 当BC=12,且AD:CD=1:2时,求⊙O的半径.
  • 23. (2016九上·瑞安期中) 如图,已知抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).

    1. (1) 求抛物线的函数表达式;
    2. (2) 当0<x<3时,求线段CD的最大值;
    3. (3) 在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;
    4. (4) 过点B,C,P的外接圆恰好经过点A时,x的值为.(直接写出答案)个

微信扫码预览、分享更方便

试卷信息