(Ⅰ)求{an}、{bn}的通项公式;
(Ⅱ)求数列 的前n项和Sn .
(Ⅰ)设M是线段PC上的一点,证明:平面BDM⊥平面PAD
(Ⅱ)求四棱锥P﹣ABCD的体积.
(Ⅰ)将T表示为x的函数,求出该函数表达式;
(Ⅱ)根据直方图估计利润T不少于57万元的概率;
(Ⅲ)根据频率分布直方图,估计一个销售季度内市场需求量x的平均数与中位数的大小.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过P作直线l交轨迹C于另一点A,求DPAO的面积的取值范围.
(Ⅰ)若函数f(x)在区间(0,9]为增函数,求实数a的取值范围;
(Ⅱ)当a≠0时,过原点分别作曲线y=f(x)与y=g(x)的切线l1 , l2 , 已知两切线的斜率互为倒数,证明: <a< .
(Ⅰ)将直线l化为直角坐标方程;
(Ⅱ)求曲线C上的一点Q 到直线l 的距离的最大值及此时点Q的坐标.
(I)当m=﹣1时,求不等式f(x)≤2的解集;
(II)设关于x的不等式f(x)≤|2x+1|的解集为A,且[ ,2]⊆A,求实数m的取值范围.