(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=(2n﹣1)•an , 求数列{bn}的前n项和Tn .
(Ⅰ)求直方图中m的值并估计居民月均用电量的中位数;
(Ⅱ)从样本里月均用电量不低于700度的用户中随机抽取4户,用X表示月均用电量不低于800度的用户数,求随机变量X的分布列及数学期望.
(Ⅰ)证明:平面ABB1A1⊥平面ABC;
(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(0,t)作圆O的一条切线交椭圆C于M,N两点,求△OMN的面积的最大值.
(Ⅰ)求a,b的值,并讨论f(x)在 上的增减性;
(Ⅱ)若f(x1)=f(x2),且0<x1<x2<π,求证: .
(参考公式: )
(Ⅰ)判断直线l与圆C的交点个数;
(Ⅱ)若圆C与直线l交于A,B两点,求线段AB的长度.