当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年河南省新乡市高考数学二模试卷(理科)

更新时间:2017-04-07 浏览次数:1293 类型:高考模拟
一、选择题
二、填空题
  • 13. (2017·新乡模拟) 若(1﹣2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5 , 则 =
  • 14. (2017·新余模拟) 已知点A(1,y1),B(9,y2)是抛物线y2=2px(p>0)上的两点,y2>y1>0,点F是它的焦点,若|BF|=5|AF|,则y12+y2的值为
  • 15. (2017高三下·赣州期中) 我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤,问本持金几何”其意思为“今有人持金出五关,第1关收税金 ,第2关收税金为剩余金的 ,第3关收税金为剩余金的 ,第4关收税金为剩余金的 ,第5关收税金为剩余金的 ,5关所收税金之和,恰好重1斤,问原来持金多少?”若将题中“5关所收税金之和,恰好重1斤,问原来持金多少?”改成假设这个原来持金为x,按此规律通过第8关,则第8关需收税金为x.
  • 16. (2017·新乡模拟) 在△ABC中,角A、B、C所对的边分别是a,b,c,cosC= ,且acosB+bcosA=2,则△ABC面积的最大值为
三、解答题
  • 17. (2017·新乡模拟) 在数列{an}和{bn}中,a1= ,{an}的前n项为Sn , 满足Sn+1+( n+1=Sn+( n(n∈N*),bn=(2n+1)an , {bn}的前n项和为Tn
    1. (1) 求数列{bn}的通项公式bn以及Tn
    2. (2) 若T1+T3 , mT2 , 3(T2+T3)成等差数列,求实数m的值.
  • 18. (2017·新乡模拟) 如图,在三棱柱ABC﹣A1B1C1中,侧面ACC1A1与侧面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2

    1. (1) 求证:AB1⊥CC1
    2. (2) 若AB1=3 ,A1C1的中点为D1 , 求二面角C﹣AB1﹣D1的余弦值.
  • 19. (2017·新乡模拟) 在高中学习过程中,同学们经常这样说:“如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:

    成绩/编号

    1

    2

    3

    4

    5

    物理(x)

    90

    85

    74

    68

    63

    数学(y)

    130

    125

    110

    95

    90

    (参考公式: = =

    参考数据:902+852+742+682+632=29394,90×130+85×125+74×110+68×95+63×90=42595.

    1. (1) 求数学成绩y关于物理成绩x的线性回归方程 = x+ 精确到0.1),若某位学生的物理成绩为80分,预测他的数学成绩;
    2. (2) 要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.
  • 20. (2017·榆林模拟) 设椭圆C: + =1(a>b>0)的左、右焦点分别为F1、F2 , 上顶点为A,过A与AF2垂直的直线交x轴负半轴于Q点,且F1恰好是线段QF2的中点.

    1. (1) 若过A、Q、F2三点的圆恰好与直线3x﹣4y﹣7=0相切,求椭圆C的方程;

    2. (2) 在(1)的条件下,B是椭圆C的左顶点,过点R( ,0)作与x轴不重合的直线l交椭圆C于E、F两点,直线BE、BF分别交直线x= 于M、N两点,若直线MR、NR的斜率分别为k1 , k2 , 试问:k1k2是否为定值?若是,求出该定值;若不是,请说明理由.

  • 21. (2017·新乡模拟) 已知函数f(x)=2lnx﹣3x2﹣11x.
    1. (1) 求曲线y=f(x)在点(1,f(1))处的切线方程;
    2. (2) 若关于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x﹣2恒成,求整数a的最小值;
    3. (3) 若正实数x1 , x2满足f(x1)+f(x2)+4(x +x )+12(x1+x2)=4,证明:x1+x2≥2.
  • 22. (2017·榆林模拟) 以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线l的参数方程为 (t为参数,0<φ<π),曲线C的极坐标方程为ρcos2θ=8sinθ.
    1. (1) 求直线l的普通方程和曲线C的直角坐标方程;
    2. (2) 设直线l与曲线C相交于A、B两点,当φ变化时,求|AB|的最小值.
  • 23. (2017·福建模拟) 已知函数f(x)=|x﹣2|.
    1. (1) 求不等式f(x)+x2﹣4>0的解集;
    2. (2) 设g(x)=﹣|x+7|+3m,若关于x的不等式f(x)<g(x)的解集非空,求实数m的取值范围.

微信扫码预览、分享更方便

试卷信息