A:p是真命题;B:p∨q是假命题;C:m是真命题.
老师告诉学生三个判断中只有一个是错误的,那么三个命题p,q,m中的真命题是.
(Ⅰ)求A;
(Ⅱ)求函数f(x)的值域.
(Ⅰ)求证:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC= ,侧棱PA与底面ABCDE所成角为45°,S△PBE= ,点M在侧棱PC上,CM=2MP,求二面角M﹣AB﹣D的余弦值.
(Ⅰ)从样本中任意选取2名学生,求恰好有1名学生的打分不低于4分的概率;
(Ⅱ)若以这100人打分的频率作为概率,在该校随机选取2名学生进行打分(学生打分之间相互独立)记X表示两人打分之和,求X的分布列和E(X).
(Ⅲ)根据(Ⅱ)的计算结果,后勤处对餐厅服务质量情况定为三个等级,并制定了对餐厅相应的奖惩方案,如表所示,设当月奖金为Y(单位:元),求E(Y).
服务质量评分X | X≤5 | 6≤X≤8 | X≥9 |
等级 | 不好 | 较好 | 优良 |
奖惩标准(元) | ﹣1000 | 2000 | 3000 |
(Ⅰ)当k=1,|AB|=8时,求抛物线E的方程;
(Ⅱ)过点A,B作抛物线E的切线l1 , l2 , 且l1 , l2交点为P,若直线PF与直线l斜率之和为﹣ ,求直线l的斜率.
(Ⅰ)求a;
(Ⅱ)若关于x的方程f2(x)ex﹣6mf(x)+9me﹣x=0在区间[1,+∞)有唯一的实根,求m的取值范围.
在平面直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C1 , C2的极坐标方程分别为ρ=2sinθ,ρcos(θ﹣ )= .
(Ⅰ)求C1和C2交点的极坐标;
(Ⅱ)直线l的参数方程为: (t为参数),直线l与x轴的交点为P,且与C1交于A,B两点,求|PA|+|PB|.
已知函数f(x)=|ax﹣2|.
(Ⅰ)当a=2时,解不等式f(x)>x+1;
(Ⅱ)若关于x的不等式f(x)+f(﹣x)< 有实数解,求m的取值范围.