当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河南省新乡市辉县2018届九年级上学期数学期末考试试卷

更新时间:2019-05-28 浏览次数:252 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 16. (2018九上·新乡期末) 计算:| ﹣2|﹣2cos45°+(﹣1)2+  .
  • 17. (2018九上·新乡期末) 已知关于x的一元二次方程x2﹣(k+2)x+2k=0
    1. (1) 求证:无论k取任何实数,方程总有实数根.
    2. (2) 若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.
  • 18. (2022九上·汝阳月考) 一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为
    1. (1) 布袋里红球有多少个?
    2. (2) 先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率。
  • 19. (2018九上·新乡期末) 某公园的人工湖边上有一座假山,假山顶上有一竖起的建筑物CD,高为10米,数学小组为了测量假山的高度DE,在公园找了一水平地面,在A处测得建筑物点D(即山顶)的仰角为35°,沿水平方向前进20米到达B点,测得建筑物顶部C点的仰角为45°,求假山的高度DE.(结果精确到1米,参考数据:sin35°≈ ,cos35°≈ ,tan35°≈

  • 20. (2019九上·南关期末) 如图,已知AB是⊙O的直径,过O点作OP⊥AB,交弦AC于点D,交⊙O于点E,且使∠PCA=∠ABC.

    1. (1) 求证:PC是⊙O的切线;
    2. (2) 若∠P=60°,PC=2,求PE的长.
  • 21. (2018九上·新乡期末) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.

    1. (1) 当a=﹣ 时,①求h的值;②通过计算判断此球能否过网.
    2. (2) 若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为 m的Q处时,乙扣球成功,求a的值.
  • 22. (2018九上·新乡期末) 某农场去年种植了10亩地的南瓜,亩产量为2000kg,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,设南瓜种植面积的增长率为 .
    1. (1) 则今年南瓜的种植面积为亩;(用含 的代数式表示)
    2. (2) 如果今年南瓜亩产量的增长率是种植面积的增长率的 ,今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.
  • 23. (2018九上·新乡期末) 如图,抛物线y=﹣ +mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).

    1. (1) 求抛物线的解析式;
    2. (2) 点E是线段BC上的一个动点(不与B、C重合),过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时点E的坐标.
    3. (3) 在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息