当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2012年广东省茂名市中考数学试卷

更新时间:2017-04-25 浏览次数:1164 类型:中考真卷
一、精心选一选
二、细心填一填
三、用心做一做
四、沉着冷静,缜密思考
  • 19. (2012·茂名) 某校计划组织学生到市影剧院观看大型感恩歌舞剧,为了解学生如何去影剧院的问题,学校随机抽取部分学生进行调查,并将调查结果制成了表格、条形统计图和扇形统计图(均不完整).

    1. (1) 此次共调查了多少位学生?
    2. (2) 将表格填充完整;

      步行

      骑自行车

      坐公共汽车

      其他

      50

    3. (3) 将条形统计图补充完整.
  • 20. (2012·茂名) 在4张完全相同的卡片正面分别写上数字1,2,3,3,现将它们的背面朝上洗均匀.
    1. (1) 随机抽出一张卡片,求抽到数字“3”的概率;
    2. (2) 若随机抽出一张卡片记下数字后放回并洗均匀,再随机抽出一张卡片,求两次都是抽到数字“3”的概率;(要求画树状图或列表求解)
    3. (3) 如果再增加若干张写有数字“3”的同样卡片,洗均匀后,使得随机抽出一张卡片是数字“3”的概率为 ,问增加了多少张卡片?
五、满怀信心,再接再厉
  • 21. (2012·茂名) 如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证:

    1. (1) △ABF≌△DEA;
    2. (2) DF是∠EDC的平分线.
  • 22. (2012·茂名) 每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.
    1. (1) 水果商要把荔枝售价至少定为多少才不会亏本?
    2. (2) 在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m=﹣10x+120,那么当销售单价定为多少时,每天获得的利润w最大?
  • 23. (2012·茂名) 如图,以AB为直径的⊙O是△ADC的外接圆,过点O作PO⊥AB,交AC于点E,PC的延长线交AB的延长线于点F,∠PEC=∠PCE.

    1. (1) 求证:FC为⊙O的切线;
    2. (2) 若△ADC是边长为a的等边三角形,求AB的长.(用含a的代数式表示)
六、灵动智慧,超越自我
  • 24. (2012·茂名) 阅读下面材料,然后解答问题:

    在平面直角坐标系中,以任意两点P(x1 , y1),Q(x2 , y2)为端点的线段的中点坐标为( ).如图,在平面直角坐标系xOy中,双曲线y= (x<0)和y= (x>0)的图象关于y轴对称,直线y= + 与两个图象分别交于A(a,1),B(1,b)两点,点C为线段AB的中点,连接OC、OB.

    1. (1) 求a、b、k的值及点C的坐标;

    2. (2) 若在坐标平面上有一点D,使得以O、C、B、D为顶点的四边形是平行四边形,请求出点D的坐标.

  • 25. (2012·茂名)

    如图所示,抛物线y=ax2+ +c经过原点O和A(4,2),与x轴交于点C,点M、N同时从原点O出发,点M以2个单位/秒的速度沿y轴正方向运动,点N以1个单位/秒的速度沿x轴正方向运动,当其中一个点停止运动时,另一点也随之停止.

    1. (1) 求抛物线的解析式和点C的坐标;

    2. (2) 在点M、N运动过程中,

      ①若线段MN与OA交于点G,试判断MN与OA的位置关系,并说明理由;

      ②若线段MN与抛物线相交于点P,探索:是否存在某一时刻t,使得以O、P、A、C为顶点的四边形是等腰梯形?若存在,请求出t值;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息