当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年湖北省黄石市大冶市中考数学模拟试卷(3月份)

更新时间:2024-07-12 浏览次数:1027 类型:中考模拟
一、仔细选一选
二、 认真填一填:
三、 全面答一答
  • 17. (2017·大冶模拟) 计算: +( 2+| ﹣1|﹣2sin60°.
  • 18. (2017·大冶模拟) 先化简,再求值: ÷( + ),其中x=2.
  • 19. (2017·大冶模拟) 已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC= OB.

    1. (1) 求证:AB是⊙O的切线;
    2. (2) 若∠ACD=45°,OC=2,求弦CD的长.
  • 20. (2024九下·尤溪月考) 解不等式组: ,并在数轴上表示出不等式组的解集.
  • 21. (2024九下·张北开学考) 如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.

    如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.

    如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…

    设游戏者从圈A起跳.

    1. (1) 嘉嘉随机掷一次骰子,求落回到圈A的概率P1
    2. (2) 淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2 , 并指出她与嘉嘉落回到圈A的可能性一样吗?
  • 22. (2020·昆明模拟)

    如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).

    (参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

  • 23. (2017·大冶模拟) 九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).

     时间x(天)

     1

     30

     60

     90

     每天销售量p(件)

     198

     140

     80

     20

    1. (1) 求出w与x的函数关系式;
    2. (2) 问销售该商品第几天时,当天的销售利润最大?并求出最大利润;
    3. (3) 该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.
  • 24. (2017·大冶模拟) 如图1,在菱形ABCD中,AC=2,BD=2 ,AC,BD相交于点O.

    1. (1) 求边AB的长;
    2. (2) 如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G.

      ①判断△AEF是哪一种特殊三角形,并说明理由;

      ②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.

  • 25. (2017·大冶模拟)

    已知双曲线y= (x>0),直线l1:y﹣ =k(x﹣ )(k<0)过定点F且与双曲线交于A,B两点,设A(x1 , y1),B(x2 , y2)(x1<x2),直线l2:y=﹣x+

    1. (1) 若k=﹣1,求△OAB的面积S;

    2. (2) 若AB= ,求k的值;

    3. (3) 设N(0,2 ),P在双曲线上,M在直线l2上且PM∥x轴,问在第二象限内是否存在一点Q,使得四边形QMPN是周长最小的平行四边形?若存在,请求出Q点的坐标.

微信扫码预览、分享更方便

试卷信息