当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年湖南省湘潭市高考数学三模试卷(理科)

更新时间:2024-07-12 浏览次数:259 类型:高考模拟
一、选择题:
二、填空题
三、解答题
  • 17. (2017·湘潭模拟) 在△ABC中,2cos2A+3=4cosA.
    1. (1) 求角A的大小;
    2. (2) 若a=2,求△ABC的周长l的取值范围.
  • 18. (2017·湘潭模拟) 在四边形ABCD中,对角线AC,BD垂直相交于点O,且OA=OB=OD=4,OC=3.

    将△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小为90°(如图).已知Q为EO的中点,点P在线段AB上,且

    (Ⅰ)证明:直线PQ∥平面ADE;

    (Ⅱ)求直线BD与平面ADE所成角θ的正弦值.

  • 19. (2017·湘潭模拟) 某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三  年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:

     班号

     一班

     二班

    三班

     四班

     五班

     六班

     频数

     5

     9

     11

     9

     7

     9

     满意人数

     4

     7

     8

     5

     6

     6

    1. (1) 在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
    2. (2) 若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为ξ,求随机变量ξ的分布列及数学期望.
  • 20. (2017·湘潭模拟) 已知点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2 , l1⊥l2 , 线段AF的垂直平分线与l2交于点P.

    (Ⅰ)求点P的轨迹C的方程;

    (Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求 的取值范围.

  • 21. (2017·湘潭模拟) 已知函数f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
    1. (1) 若x=2为f(x)的极值点,求实数a的值;
    2. (2) 若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
    3. (3) 当a=﹣ 时,方程f(1﹣x)= 有实根,求实数b的最大值.
  • 22. (2017·湘潭模拟) 在平面直角坐标系xOy中,圆C的参数方程为 (θ为参数),以O为极点,x轴的非负半轴为极轴且取相同的单位长度建立极坐标系.
    1. (1) 求圆C的极坐标方程;
    2. (2) 若直线l的极坐标方程是 ,射线 与圆C的交点为O、P,与直线l的交点为Q.求线段PQ的长.
  • 23. (2017·湘潭模拟) 已知函数f(x)=|x﹣a|+2|x+b|(a>0,b>0)的最小值为1.
    1. (1) 求a+b的值;
    2. (2) 若 恒成立,求实数m的最大值.

微信扫码预览、分享更方便

试卷信息