当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省杭州市滨江区“江浦兴涛”四校2019届九年级12月五科...

更新时间:2024-07-13 浏览次数:562 类型:竞赛测试
一、单选题
二、填空题
三、解答题
  • 17. (2019九下·绍兴期中) 如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.

    1. (1) 求∠BCD的度数.
    2. (2) 求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)
  • 18. (2019九上·滨江竞赛) 节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品.质检部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成此表.

     寿命(小时)

     频数

     频率

     4000≤t≤5000

    10

    0.05

     5000≤t<6000

    20

     a

     6000≤t<7000

    80

     0.40

     7000≤t<8000

     b

     0.15

     8000≤t<9000

     60

     c

     合计

     200

     1


    1. (1) 根据分布表中的数据,写出a,b,c的值;
    2. (2) 某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.
  • 19. (2019九上·滨江竞赛) 如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且

    1. (1) 求证:△ADF∽△ACG;
    2. (2) 若 ,求 的值.
  • 20. (2019九上·滨江竞赛) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在 点上正方 处发出一球,羽毛球飞行的高度 与水平距离 之间满足函数表达式 .已知点 与球网的水平距离为 ,球网的高度为

    1. (1) 当 时,①求 的值.②通过计算判断此球能否过网.
    2. (2) 若甲发球过网后,羽毛球飞行到点 的水平距离为 ,离地面的高度为 处时,乙扣球成功,求 的值.
  • 21. (2019九上·滨江竞赛) 已知:如图,AB是⊙O的直径,点C、D为圆上两点,且CB=CD,CF⊥AB于点F,CE⊥AD的延长线于点E.

    1. (1) 试说明:DE=BF;
    2. (2) 若∠DAB=60°,AB=6,求CF的长.
  • 22. (2019九上·滨江竞赛) 如图,在△ABC中,AB=6cm,BC=12cm,∠B=90°.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P、Q分别从A、B同时出发,设移动时间为t(s).

    1. (1) 当t=4时,求△PBQ的面积;
    2. (2) 当t为多少时,四边形APQC的面积最小?最小面积是多少?
    3. (3) 当t为多少时,△PQB与△ABC相似.
  • 23. (2019九上·滨江竞赛) 二次函数y= 的图象与x轴交于点A和点B,以AB为边在x轴下方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.

    1. (1) 求出m的值并求出点A、点B的坐标.
    2. (2) 当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;
    3. (3) 是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息