A.每天都用;B.经常使用;C.偶尔使用;D.从未使用.
将这次调查情况整理并绘制如下两幅统计图:
根据图中的信息,解答下列问题:
已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N.
如图,已知∠ABM=37°,AB=20,C是射线BM上一点.
①AC=13;②tan∠ACB= ;③连接AC,△ABC的面积为126.
(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
实际问题:如图(1),一圆柱的底面半径为5厘米,BC是底面直径,高AB为5厘米,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线.
解决方案:
路线1:侧面展开图中的线段AC,如图(2)所示,
设路线l的长度为l1:则l12=AC2=AB2+BC2=52+(5π)2=25+25π2;
路线2:高线AB+底面直径BC,如图(1)所示.
设路线2的长度为l2:则l22=(AB+BC)2=(5+10)2=225.
为比较l1 , l2的大小,我们采用“作差法”:
∵l12﹣l22=25(π2﹣8)>0∴l12>l22∴l1>l2 ,
小明认为应选择路线2较短.
小亮对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1厘米,高AB为5厘米.”.请你用上述方法帮小亮比较出l1与l2的大小:
请你帮他们继续研究:在一般情况下,当圆柱的底面半径为r厘米时,高为h厘米,蚂蚁从A点出发沿圆柱表面爬行到点C,当 满足什么条件时,选择路线2最短?请说明理由.
如图(3)为2个相同的圆柱紧密排列在一起,高为5厘米,当蚂蚁从点A出发沿圆柱表面爬行到C点的两条路线长度相等时,求圆柱的底面半径r.(注:按上面小明所设计的两条路线方式).
先让我们一起来学习方程m2+1= 的解法:
解:令m2=a,则a+1= ,方程两边平方可得,(a+1)2=a+3
解得a1=1,a2=﹣2,∵m2≥0∴m2=1∴m=±1
点评:类似的方程可以用“整体换元”的思想解决.
不妨一试:
如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.