①三角形有且只有一个内切圆;
②四边形的内角和与外角和相等;
③顺次连接四边形各边中点所得的四边形一定是菱形;
④一组对边平行且一组对角相等的四边形是平行四边形.
如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为( )
应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为( )
甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:
①a=40,m=1;
②乙的速度是80km/h;
③甲比乙迟 h到达B地;
④乙车行驶 小时或 小时,两车恰好相距50km.
正确的个数是( )
①A⊕B=(x1+x2 , y1+y2);②A⊗B=x1x2+y1y2;③当x1=x2且y1=y2时,A=B,有下列四个命题:
①若A(1,2),B(2,﹣1),则A⊕B=(3,1),A⊗B=0;
②若A⊕B=B⊕C,则A=C;
③若A⊗B=B⊗C,则A=C;
④对任意点A、B、C,均有(A⊕B)⊕C=A⊕(B⊕C)成立,其中正确命题的个数为( )
如果两个三角形的两条边对应相等,夹角互补,那么这两个三角形叫做互补三角形,如图2,分别以△ABC的边AB、AC为边向外作正方形ABDE和ACGF,则图中的两个三角形就是互补三角形.
如图,已知抛物线经过点A(2,0)和B(t,0)(t≥2),与y轴交于点C,直线l:y=x+2t经过点C,交x轴于点D,直线AE交抛物线于点E,且有∠CAE=∠CDO,作CF⊥AE于点F.