①直线A1B与B1C所成的角为60°;
②若M是线段AC1上的动点,则直线CM与平面BC1D所成角的正弦值的取值范围是 ;
③若P,Q是线段AC上的动点,且PQ=1,则四面体B1D1PQ的体积恒为 .
其中,正确结论的个数是( )
(Ⅰ)若直线l与直线m:3x+y﹣1=0垂直,求直线l的一般式方程;
(Ⅱ)写出(Ⅰ)中直线l的截距式方程,并求直线l与坐标轴围成的三角形的面积.
(Ⅰ) EF∥平面A1BC1;
(Ⅱ) 平面AEF⊥平面BCC1B1 .
(Ⅰ) 证明:CD⊥平面A1OC;
(Ⅱ) 若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角(锐角)的余弦值.
(Ⅰ) 若a=1,求直线y=x被圆C所截得的弦长;
(Ⅱ) 若a>1,如图,圆C与x轴相交于两点M,N(点M在点N的左侧).过点M的动直线l与圆O:x2+y2=4相交于A,B两点.问:是否存在实数a,使得对任意的直线l均有∠ANM=∠BNM?若存在,求出实数a的值,若不存在,请说明理由.