当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2016年广东省深圳市高考数学二模试卷(理科)

更新时间:2017-05-18 浏览次数:1056 类型:高考模拟
一、选择题
二、填空题
三、解答题
  • 17. (2016·深圳模拟) 设数列{an}的前n项和为Sn , an是Sn和1的等差中项.
    1. (1) 求数列{an}的通项公式;
    2. (2) 求数列{nan}的前n项和Tn
  • 18. (2016·深圳模拟) 某市在对学生的综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级,其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”.

    参考公式:K2= ,其中n=a+b+c+d.

    临界值表:

    P(K2≥k0

    0.15

    0.10

    0.05

    0.025

    0.010

    k0

    2.072

    2.706

    3.841

    5.024

    6.635

    1. (1) 某校高一年级有男生500人,女生400人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高一学生中抽取45名学生的综合素质评价结果,其各个等级的频数统计如下表:

      等级

      优秀

      合格

      不合格

      男生(人)

      15

      x

      5

      女生(人)

      15

      3

      y

      根据表中统计的数据填写下面2×2列联表,并判断是否有90%的把握认为“综合素质评价测评结果为优秀与性别有关”?

      优秀

      男生

      女生

      总计

      非优秀

      总计

    2. (2) 以(1)中抽取的45名学生的综合素质评价等级的频率作为全市各个评价等级发生的概率,且每名学生是否“优秀”相互独立,现从该市高一学生中随机抽取3人.

      ①求所选3人中恰有2人综合素质评价为“优秀”的概率;

      ②记X表示这3人中综合素质评价等级为“优秀”的个数,求X的数学期望.

  • 19. (2016·深圳模拟) 在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE= ,A1F= ,CE⊥EF.

    (Ⅰ)证明:平面ABB1A1⊥平面ABC;

    (Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.

  • 20. (2016·深圳模拟) 过抛物线C:y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,且A,B两点的纵坐标之积为﹣4.
    1. (1) 求抛物线C的方程;
    2. (2) 已知点D的坐标为(4,0),若过D和B两点的直线交抛物线C的准线于P点,求证:直线AP与x轴交于一定点.
  • 21. (2016·深圳模拟) 已知函数f(x)= ,直线y= x为曲线y=f(x)的切线(e为自然对数的底数).
    1. (1) 求实数a的值;
    2. (2) 用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣ }(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.
  • 22. (2016·深圳模拟) 如图,AB为圆O的直径,C在圆O上,CF⊥AB于F,点D为线段CF上任意一点,延长AD交圆O于E,∠AEC=30°.

    1. (1) 求证:AF=FO;
    2. (2) 若CF= ,求AD•AE的值.
  • 23. (2016·深圳模拟) 已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合,若曲线C的参数方程为 (α是参数),直线l的极坐标方程为 ρsin(θ﹣ )=1.
    1. (1) 将曲线C的参数方程化为极坐标方程;
    2. (2) 由直线l上一点向曲线C引切线,求切线长的最小值.
  • 24. (2016·深圳模拟) 已知关于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,记实数m的最大值为M.
    1. (1) 求M的值;
    2. (2) 正数a,b,c满足a+2b+c=M,求证: + ≥1.

微信扫码预览、分享更方便

试卷信息