当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年安徽省示范高中皖北协作区高考数学模拟试卷(理科)

更新时间:2017-05-18 浏览次数:740 类型:高考模拟
一、选择题
二、填空题
  • 13. (2017·安徽模拟) 我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上题的已知条件,若要使织布的总尺数不少于20尺,该女子所需的天数至少为
  • 14. (2017·安徽模拟) 设M是△ABC边BC上的任意一点, = ,若 ,则λ+μ=
  • 15. (2017·安徽模拟) 江湖传说,蜀中唐门配制的天下第一奇毒“含笑半步癫”是由3种藏红花,2种南海蛇毒和1种西域毒草顺次添加炼制而成,其中藏红花的添加顺序不能相邻,同时南海蛇毒的添加顺序也不能相邻,现要研究所有不同添加顺序多药效的影响,则总共要进行次试验.
  • 16. (2017·安徽模拟) 定义下凸函数如下:设f(x)为区间I上的函数,若对任意的x1 , x2∈I总有f( )≥ ,则称f(x)为I上的下凸函数,某同学查阅资料后发现了下凸函数有如下判定定理和性质定理:

    判定定理:f(x)为下凸函数的充要条件是f″(x)≥0,x∈I,其中f″(x)为f(x)的导函数f′(x)的导数.

    性质定理:若函数f(x)为区间I上的下凸函数,则对I内任意的x1 , x2 , …,xn , 都有 ≥f( ).

    请问:在△ABC中,sinA+sinB+sinC的最大值为

三、解答题
  • 17. (2017·安徽模拟) 如图,∠BAC= ,P为∠BAC内部一点,过点P的直线与∠BAC的两边交于点B,C,且PA⊥AC,AP=

    (Ⅰ)若AB=3,求PC;

    (Ⅱ)求 的取值范围.

  • 18. (2017·安徽模拟) 2016年美国总统大选过后,有媒体从某公司的全体员工中随机抽取了200人,对他们的投票结果进行了统计(不考虑弃权等其他情况),发现支持希拉里的一共有95人,其中女员工55人,支持特朗普的男员工有60人.

    (Ⅰ)根据已知条件完成下面的2×2列联表:据此材料,是否有95%的把握认为投票结果与性别有关?

    支持希拉里

    支持特朗普

    合计

    男员工

    女员工

    合计

    (Ⅱ)若从该公司的所有男员工中随机抽取3人,记其中支持特朗普的人数为X,求随机变量X的分布列和数学期望.(用相应的频率估计概率)

    附:

    P(K2≥k0

    0.15

    0.10

    0.05

    0.025

    0.010

    0.005

    0.001

    K0

    2.072

    2.706

    3.841

    5.024

    6.635

    7.879

    10.828

    (参考公式:K2= ,其中n=a+b+c+d)

  • 19. (2017·安徽模拟) 如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,PA⊥BC,E是棱PC的中点,∠DAB=90°,AB∥CD,AD=CD=2AB=2.

    (Ⅰ)求证:PA⊥平面ABCD;

    (Ⅱ)若二面角E﹣BD﹣P大于60°,求四棱锥P﹣ABCD体积的取值范围.

  • 20. (2017·安徽模拟) 已知椭圆C: =1,直线l过点M(﹣1,0),与椭圆C交于A,B两点,交y轴于点N.

    1. (1) 设MN的中点恰在椭圆C上,求直线l的方程;

    2. (2) 设 ,试探究λ+μ是否为定值,若是,求出该定值;若不是,请说明理由.

  • 21. (2017·安徽模拟) 已知函数f(x)=xlnx.

    (Ⅰ)设函数g(x)= ,求g(x)的单调区间;

    (Ⅱ)若方程f(x)=t有两个不相等的实数根x1 , x2 , 求证:x1+x2

  • 22. (2017·安徽模拟) 在直角坐标系xOy中,曲线C1的参数方程为 (t为参数,α∈[0,π)),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.

    (Ⅰ)求C2的直角坐标方程;

    (Ⅱ)若曲线C1与C2交于A,B两点,且|AB|> ,求α的取值范围.

  • 23. (2017·安徽模拟) 已知函数f(x)=|x﹣4|,g(x)=a|x|,a∈R.

    (Ⅰ)当a=2时,解关于x的不等式f(x)>2g(x)+1;

    (Ⅱ)若不等式f(x)≥g(x)﹣4对任意x∈R恒成立,求a的取值范围.

微信扫码预览、分享更方便

试卷信息