当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2013年江苏省南京市中考数学试卷

更新时间:2024-07-12 浏览次数:488 类型:中考真卷
一、选择题
二、填空题
三、解答题
  • 19. (2023八下·广安期末) 如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.

    1. (1) 求证:∠ADB=∠CDB;
    2. (2) 若∠ADC=90°,求证:四边形MPND是正方形.
    1. (1) 一只不透明的袋子中装有颜色分别为红、黄、蓝、绿的球各1个.这些球除颜色外都相同.求下列事件的概率:

      ①搅匀后从中任意摸出1个球,恰好是红球;

      ②搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,两次都是红球;

    2. (2) 某次考试共有6道选择题,每道题所给出的4个选项中,恰有一个是正确的.如果小明从每道题的4个选项中随机地选择1个,那么他6道选择题全部正确的概率是       
      A . B . C . 1﹣ D . 1﹣
  • 21. (2013·南京) 某校有2000名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样调查.整理样本数据,得到下列图表:

    1. (1) 理解划线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,这样的抽样是否合理?请说明理由;
    2. (2) 根据抽样调查的结果,将估计出的全校2000名学生上学方式的情况绘制成条形统计图;

    3. (3) 该校数学兴趣小组结合调查获取信息,向学校提出了一些建议,如:骑车上学的学生约占全校的34%,建议学校合理安排自行车停车场地,请你结合上述统计的全过程,再提出一条合理化的建议.
  • 22. (2013·南京) 已知不等臂跷跷板AB长4m.如图①,当AB的一端A碰到地面上时,AB与地面的夹角为α;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为β.求跷跷板AB的支撑点O到地面的高度OH.(用含α,β的式子表示)

  • 23. (2013·南京) 某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.

    消费金额(元)

    300﹣400

    400﹣500

    500﹣600

    600﹣700

    700﹣900

    返还金额(元)

    30

    60

    100

    130

    150

    根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如:若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1﹣80%)+30=110(元).

    1. (1) 购买一件标价为1000元的商品,顾客获得的优惠额是多少?
    2. (2) 如果顾客购买标价不超过800元的商品,要使获得的优惠不少于226元,那么该商品的标价至少为多少元?
  • 24. (2013·南京) 小丽驾车从甲地到乙地.设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.

    1. (1) 小丽驾车的最高速度是 km/h;
    2. (2) 当20≤x≤30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度;
    3. (3) 如果汽车每行驶100km耗油10L,那么小丽驾车从甲地到乙地共耗油多少升?
  • 25. (2013·南京) 如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.

    1. (1) 判断直线PC与⊙O的位置关系,并说明理由;
    2. (2) 若AB=9,BC=6.求PC的长.
  • 26. (2013·南京) 已知二次函数y=a(x﹣m)2﹣a(x﹣m)(a,m为常数,且a≠0).

    1. (1) 求证:不论a与m为何值,该函数的图象与x轴总有两个公共点.

    2. (2) 设该函数的图象的顶点为C,与x轴交于A,B两点,与y轴交于D点.

      ①当△ABC的面积为1时,求a的值.

      ②当△ABC的面积与△ABD的面积相等时,求m的值.

  • 27. (2013·南京)

    对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相同,因此△ACB和△A′B′C′互为顺相似;如图②,△ABC∽△A′B′C′,且沿周界ABCA与A′B′C′A′环绕的方向相反,因此△ACB和△A′B′C′互为逆相似.

    1. (1)

      根据图Ⅰ,图Ⅱ和图Ⅲ满足的条件.可得下列三对相似三角形:①△ADE与△ABC;②△GHO与△KFO;③△NQP与△NMQ;其中,互为顺相似的是;互为逆相似的是.(填写所有符合要求的序号).

    2. (2) 如图③,在锐角△ABC中,∠A<∠B<∠C,点P在△ABC的边上(不与点A,B,C重合).过点P画直线截△ABC,使截得的一个三角形与△ABC互为逆相似.请根据点P的不同位置,探索过点P的截线的情形,画出图形并说明截线满足的条件,不必说明理由.

微信扫码预览、分享更方便

试卷信息