当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江秀洲区外国语学校2018-2019学年九年级下学期数学3...

更新时间:2019-06-11 浏览次数:248 类型:月考试卷
一、选择题(本题有10小题,每小题3分,共30分)
二、填空题(本题有6小题,每小题4分,共24分)
三、解答题(本题有8小题,共66分)
  • 19. (2019九下·秀洲月考) 目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,八年级数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种),并将调查结果绘制成如下不完整的统计图.

    1. (1) m=,n=
    2. (2) 将这两个统计图补全.
    3. (3) 根据抽样调查的结果,请估算全校2000名学生中大约有多少人最认可“微信”这一新生事物?
    4. (4) 已知A,B两位同学都最认可“微信”,C同学最认可“支付宝”,D同学最认可“网购”,从这四名同学中抽取两名同学,请你通过列表或画树状图的方法求出这两位同学最认可的新生事物不一样的概率.
  • 20. (2019九下·秀洲月考) 如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(-2,0),与反比例函数y= (x>0)的图象相交于点B(a,4).

    1. (1) 求一次函数和反比例函数的表达式.
    2. (2) 设M是直线AB上一点,过点M作MN∥x轴,交反比例函数y= (x>0)的图象于点N,若以A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.
  • 21. (2019九下·秀洲月考) 如图,O为Rt△ABC的直角边AC上一点,以 OC为半径的⊙O与斜边AB相切于点D,交OA于点E.已知BC= ,AC=3

    1. (1) 求AD的长;


    2. (2) 求图中阴影部分的面积.
  • 22. (2019九下·秀洲月考) 如图

    如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD中点,AC=2.8m,PD=2m,CF=1m,∠DPE=20°。当点P位于初始位置P0时,点D与C重合(图2),根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳。

    1. (1) 上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1m)
    2. (2) 中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P在(1)的基础上还需上调多少距离?(结果精确到0.1m)(参考数:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75, ≈1.41, ≈1.73)
  • 23. (2019九下·秀洲月考) 嘉兴素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).

    1. (1) 设每天的放养费用是a万元,收购成本为b万元,求a和b的值;
    2. (2) 设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为 ;y与t的函数关系如图所示.

      ①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;

      ②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)

  • 24. (2019九下·秀洲月考) 如图①,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为E,GF⊥CD,垂足为F.

    1. (1) 证明与推断:

      ①求证:四边形CEGF是正方形.

      ②推断: 的值为

    2. (2) 探究与证明:

      将正方形CEGF绕点C顺时针方向旋转α(0°<α<45°),如图②所示,试探究线段AG与BE之间的数量关系,并说明理由.

    3. (3) 拓展与运用:

      在正方形CEGF旋转的过程中,当B,E,F三点在一条直线上时,如图③所示,延长CG交AD于点H.若AG=6,GH=2 ,求BC的长。

微信扫码预览、分享更方便

试卷信息