当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

黑龙江省哈尔滨市道里区2017-2018学年八年级下学期数学...

更新时间:2019-06-26 浏览次数:587 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 21. (2018八下·道里期末)                 
    1. (1) 用公式法解方程:x2﹣5x+3=0;
    2. (2) 用因式分解法解方程:3(x﹣3)2=2x﹣6
  • 22. (2018八下·道里期末) 图1,图2都是8×8的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点.

    1. (1) 请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);
    2. (2) 图2中所画的平行四边形的面积为
  • 23. (2018八下·道里期末) 一块矩形场地,场地的长是宽的2倍.计划在矩形场地上修建宽都为2米的两条互相垂直的小路,如图,余下的四块小矩形场地建成草坪.四块小矩形草坪的面积之和为364平方米,求这个矩形场地的长和宽各是多少米?

  • 24. (2018八下·道里期末) 已知:在四边形ABCD中,∠ABC=∠DCB=90°,点P在BC边上,连接AP和PD,点E在DC边上,连接BE与DP和AP分别交于点F和点G,若AB=PC,BP=DC,∠DFE=45°.

    1. (1) 如图1,求证:四边形ABED为平行四边形;
    2. (2) 如图2,把△PFG沿FG翻折,得到△QFG(点P与点Q为对应点),点Q在AD上,在不添加任何辅助线的情况下,请直接写出图中所有的平行四边形(不包括平行四边形ABED,但包括特殊的平行四边形).
  • 25. (2018八下·道里期末) 某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:

    原进价(元/张)

    零售价(元/张)

    成套售价(元/套)

    餐桌

    A

    270

    500元

    餐椅

    a﹣110

    70

    已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.

    1. (1) 求表中a的值;
    2. (2) 若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?
  • 26. (2018八下·道里期末) 在菱形ABCD中,点Q为AB边上一点,点F为BC边上一点连接DQ、DF和QF.

    1. (1) 如图1,若∠ADQ=∠FDQ,∠FQD=90°,求证:AQ=BQ;
    2. (2) 如图2,在(1)的条件下,∠BAD=120°,对角线AC、BD相交于点P,以点P为顶点作∠MPN=60°,PM与AB交于点M,PN与AD交于点N,求证:DN+QM=AB;
    3. (3) 如图3,在(1)(2)的条件下,延长NP交BC于点E,延长CN到点K,使CK=CA,连接AK并延长和CD的延长线交于点T,若AM:DN=1:5,S四边形MBEP=12 ,求线段DT的长.
  • 27. (2018八下·道里期末) 在平面直角坐标系中,点O为坐标原点,点B和点C分别是x轴的正半轴和y轴的正半轴上的两点,且OB:BC=1: ,直线BC的解析式为y=﹣kx+6k(k≠0).

    1. (1) 如图1,求点C的坐标;
    2. (2) 如图2,点D为OB中点,点E为OC中点,点F在y轴的负半轴上,点A是射线FD上的第一象限的点,连接AE、ED,若FD=DA,且SAED= ,求点A的坐标;
    3. (3) 如图3,在(2)的条件下,点P在线段OB上,点Q在线段OC的延长线上,CQ=BP,连接PQ与BC交于点M,连接AM并延长AM到点N,连接QN、AP、AB和NP,若∠QPA﹣∠NQO=∠NQP﹣∠PAB,NP=2 ,求直线PQ的解析式.

微信扫码预览、分享更方便

试卷信息