当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省无锡市2019年中考数学试卷

更新时间:2024-07-13 浏览次数:1109 类型:中考真卷
一、单选题
二、填空题
三、解答题
  • 21. (2020八上·金坛期中) 如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;

    求证:

    1. (1)
    2. (2)
  • 22. (2021九上·郧县期末) 某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品。
    1. (1) 如果小芳只有一次摸球机会,那么小芳获得奖品的概率为
    2. (2) 如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率。(请用“画树状图”或“列表”等方法写出分析过程)
  • 23. (2019·无锡) 《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格,某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示。

    各等级学生平均分统计表

    等级

    优秀

    良好

    及格

    不及格

    平均分

    92.1

    85.0

    69.2

    41.3

    各等级学生人数分布扇形统计图

    1. (1) 扇形统计图中“不及格”所占的百分比是
    2. (2) 计算所抽取的学生的测试成绩的平均分;
    3. (3) 若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级。
  • 24. (2019·无锡) 一次函数 的图像与x轴的负半轴相交于点A,与y轴的正半轴相交于点B,且 △OAB的外接圆的圆心M的横坐标为-3.

    1. (1) 求一次函数的解析式;
    2. (2) 求图中阴影部分的面积.
  • 25. (2019·无锡) “低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑车前往乙地,她与乙地之间的距离y(km)与出发时间之间的函数关系式如图1中线段AB所示,在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离S(km)与出发时间x(h)之间的函数关系式如图2中折线段CD-DE-EF所示.

    1. (1) 小丽和小明骑车的速度各是多少?
    2. (2) 求E点坐标,并解释点的实际意义.
  • 26. (2019·无锡) 按要求作图,不要求写作法,但要保留作图痕迹.

    1. (1) 如图1,A为圆E上一点,请用直尺(不带刻度)和圆规作出圆内接正方形;
    2. (2) 我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图:

      ①如图2,在▱ABCD中,E为CD的中点,作BC的中点F;

      ②图3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作△ABC的高AH

  • 27. (2019·无锡) 已知二次函数 (a>0)的图象与x轴交于A、B两点,(A在B左侧,且OA<OB),与y轴交于点C.

    1. (1) 求C点坐标,并判断b的正负性;
    2. (2) 设这个二次函数的图象的对称轴与直线AC交于点D,已知DC:CA=1:2,直线BD与y轴交于点E,连接BC,

      ①若△BCE的面积为8,求二次函数的解析式;

      ②若△BCD为锐角三角形,请直接写出OA的取值范围.

  • 28. (2019·无锡) 如图1,在矩形 中,BC=3,动点 出发,以每秒1个单位的速度,沿射线 方向移动,作 关于直线 的对称 ,设点 的运动时间为

    1. (1) 若

      ①如图2,当点B’落在AC上时,显然△PCB’是直角三角形,求此时t的值

      ②是否存在异于图2的时刻,使得△PCB’是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由

    2. (2) 当P点不与C点重合时,若直线PB’与直线CD相交于点M,且当t<3时存在某一时刻有结论∠PAM=45°成立,试探究:对于t>3的任意时刻,结论∠PAM=45°是否总是成立?请说明理由.

微信扫码预览、分享更方便

试卷信息