当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年高考文数真题试卷(天津卷)

更新时间:2017-06-12 浏览次数:1182 类型:高考真卷
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.
二、填空题:本大题共6小题,每小题5分,共30分.
三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.
  • 15. (2017·天津) 在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac= (a2﹣b2﹣c2).(13分)


    (Ⅰ)求cosA的值;

    (Ⅱ)求sin(2B﹣A)的值.

  • 16. (2017·天津) 电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:


    连续剧播放时长(分钟)

    广告播放时长(分钟)

    收视人次(万)

    70

    5

    60

    60

    5

    25

    已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(13分)


    (I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;

    (II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?

  • 17. (2017·天津) 如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(13分)

    (I)求异面直线AP与BC所成角的余弦值;

    (II)求证:PD⊥平面PBC;

    (II)求直线AB与平面PBC所成角的正弦值.

  • 18. (2017·天津) 已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4 . (13分)


    (Ⅰ)求{an}和{bn}的通项公式;

    (Ⅱ)求数列{a2nbn}的前n项和(n∈N*).

  • 19. (2017·天津) 设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=exf(x).(14分)


    (Ⅰ)求f(x)的单调区间;

    (Ⅱ)已知函数y=g(x)和y=ex的图象在公共点(x0 , y0)处有相同的切线,

    (i)求证:f(x)在x=x0处的导数等于0;

    (ii)若关于x的不等式g(x)≤ex在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.

  • 20. (2017·天津) 已知椭圆 + =1(a>b>0)的左焦点为F(﹣c,0),右顶点为A,点E的坐标为(0,c),△EFA的面积为 .(14分)


    (I)求椭圆的离心率;

    (II)设点Q在线段AE上,|FQ|= c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM∥QN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.

    (i)求直线FP的斜率;

    (ii)求椭圆的方程.

微信扫码预览、分享更方便

试卷信息