当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年北京市顺义区中考数学一模试卷

更新时间:2017-06-22 浏览次数:848 类型:中考模拟
一、选择题.
二、填空题
三、解答题.
  • 17. (2017·顺义模拟) 计算:(2 ﹣π)0﹣4cos60°+| ﹣2|﹣
  • 18. (2017·顺义模拟) 解不等式: ≥7﹣x,并把它的解集在数轴上表示出来.

  • 19. (2017·顺义模拟) 如图,▱ABCD中,BE⊥CD于E,CE=DE.求证:∠A=∠ABD.

  • 20. (2017·顺义模拟) 已知关于x的方程x2﹣2mx+m2+m﹣2=0有两个不相等的实数根.
    1. (1) 求m的取值范围;
    2. (2) 当m为正整数时,求方程的根.
  • 21. (2017·顺义模拟)

    如图,在平面直角坐标系xOy中,已知直线l1:y=mx(m≠0)与直线l2:y=ax+b(a≠0)相交于点A(1,2),直线l2与x轴交于点B(3,0).

    1. (1) 分别求直线l1和l2的表达式;

    2. (2) 过动点P(0,n)且平行于x轴的直线与l1 , l2的交点分别为C,D,当点C位于点D左方时,写出n的取值范围.

  • 22. (2017·顺义模拟) 某电脑公司有A、B两种型号的电脑,其中A型电脑每台6 000元,B型电脑每台4 000元.学校计划花费150 000元从该公司购进这两种型号的电脑共35台,问购买A型、B型电脑各多少台?
  • 23. (2017·顺义模拟) 已知:如图,四边形ABCD中,对角线AC,BD相交于点O,AB=AC=AD,∠DAC=∠ABC.

    1. (1) 求证:BD平分∠ABC;
    2. (2) 若∠DAC=45°,OA=1,求OC的长.
  • 24. (2017·顺义模拟) 中国古代有二十四节气歌,“春雨惊春清谷天,夏满芒夏暑相连.秋处露秋寒霜降,冬雪雪冬小大寒.”它是为便于记忆我国古时历法中二十四节气而编成的小诗歌,流传至今.节气指二十四时节和气候,是中国古代订立的一种用来指导农事的补充历法,是中国古代劳动人民长期经验的积累和智慧的结晶.其中第一个字“春”是指立春,为春季的开始,但在气象学上的入春日是有严格定义的,即连续5天的日平均气温稳定超过10℃又低于22℃,才算是进入春天,其中,5天中的第一天即为入春日.例如:2014年3月13日至18日,北京的日平均气温分别为9.3℃,11.7℃,12.7℃,11.7℃,12.7℃和12.3℃,即从3月14日开始,北京日平均气温已连续5天稳定超过10℃,达到了气象学意义上的入春标准.因此可以说2014年3月14日为北京的入春日.

            日平均温度是指一天24小时的平均温度.气象学上通常用一天中的2时、8时、14时、20时4个时刻的气温的平均值作为这一天的日平均气温(即4个气温相加除以4),结果保留一位小数.

             如表是北京顺义2017年3月28日至4月3日的气温记录及日平均气温(单位:℃)

    时间

    2时

    8时

    14时

    20时

    平均气温

    3月28日

    6

    8

    13

    11

    9.5

    3月29日

    7

    6

    17

    14

    a

    3月30日

    7

    9

    15

    12

    10.8

    3月31日

    8

    10

    19

    13

    12.5

    4月1日

    8

    7

    18

    15

    12

    4月2日

    11

    7

    22

    16

    14

    4月3日

    13

    11

    21

    17

    15.5

    根据以上材料解答下列问题:

    1. (1) 求出3月29日的日平均气温a;
    2. (2) 采用适当的统计图将这7天的日平均气温的变化情况表示出来;
    3. (3) 请指出2017年的哪一天是北京顺义在气象学意义上的入春日.
  • 25. (2017·顺义模拟) 如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连接BC,∠P=∠B.

    1. (1) 求∠P的度数;
    2. (2) 连接PB,若⊙O的半径为a,写出求△PBC面积的思路.

  • 26. (2017·顺义模拟)

    某“数学兴趣小组”根据学习函数的经验,对函数y= 的图象和性质进行了探究,探究过程如下,请补充完整:

    1. (1) 该函数的自变量x的取值范围是

    2. (2) 同学们先找到y与x的几组对应值,然后在下图的平面直角坐标系xOy中,描出各对对应值为坐标的点.请你根据描出的点,画出该函数的图象;

    3. (3) 结合画出的函数图象,写出该函数的一条性质:

  • 27. (2017·顺义模拟) 如图,已知抛物线y=ax2+bx+8(a≠0)与x轴交于A(﹣2,0),B两点,与y轴交于C点,tan∠ABC=2.

    1. (1) 求抛物线的表达式及其顶点D的坐标;
    2. (2) 过点A、B作x轴的垂线,交直线CD于点E、F,将抛物线沿其对称轴向上平移m个单位,使抛物线与线段EF(含线段端点)只有1个公共点.求m的取值范围.
  • 28. (2020九上·新邱期中) 在正方形ABCD和正方形DEFG中,顶点B、D、F在同一直线上,H是BF的中点.

    1. (1)

      如图1,若AB=1,DG=2,求BH的长;

    2. (2)

      如图2,连接AH,GH.

      小宇观察图2,提出猜想:AH=GH,AH⊥GH.小宇把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:

      想法1:延长AH交EF于点M,连接AG,GM,要证明结论成立只需证△GAM是等腰直角三角形;

      想法2:连接AC,GE分别交BF于点M,N,要证明结论成立只需证△AMH≌△HNG.

      请你参考上面的想法,帮助小宇证明AH=GH,AH⊥GH.(一种方法即可)

  • 29. (2017·顺义模拟) 在平面直角坐标系xOy中,对于双曲线y= (m>0)和双曲线y= (n>0),如果m=2n,则称双曲线y= (m>0)和双曲线y= (n>0)为“倍半双曲线”,双曲线y= (m>0)是双曲线y= (n>0)的“倍双曲线”,双曲线y= (n>0)是双曲线y= (m>0)的“半双曲线”,

    1. (1) 请你写出双曲线y= 的“倍双曲线”是;双曲线y= 的“半双曲线”是

    2. (2)

      如图1,在平面直角坐标系xOy中,已知点A是双曲线y= 在第一象限内任意一点,过点A与y轴平行的直线交双曲线y= 的“半双曲线”于点B,求△AOB的面积;

    3. (3)

      如图2,已知点M是双曲线y= (k>0)在第一象限内任意一点,过点M与y轴平行的直线交双曲线y= 的“半双曲线”于点N,过点M与x轴平行的直线交双曲线y= 的“半双曲线”于点P,若△MNP的面积记为SMNP , 且1≤SMNP≤2,求k的取值范围.

微信扫码预览、分享更方便

试卷信息