当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年浙江省绍兴市中考数学试卷

更新时间:2024-07-12 浏览次数:2558 类型:中考真卷
一、选择题
二、填空题
三、解答题
  • 17. (2017·绍兴) 计算题。

    1. (1) 计算: .

    2. (2) 解不等式:4x+5≤2(x+1).

  • 18. (2017·绍兴)

    某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.

    1. (1) 若某月用水量为18立方米,则应交水费多少元?

    2. (2) 求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?

  • 19. (2017·绍兴)

    为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如下图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题.

    1. (1) 本次接受问卷调查的同学有多少人?补全条形统计图.

    2. (2) 本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.

  • 20. (2017·绍兴)

    如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶中D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.

    (结果精确到0.1m。参考数据:tan20°≈0.36,tan18°≈0.32)

    1. (1) 求∠BCD的度数.

    2. (2) 求教学楼的高BD

  • 21. (2017·绍兴)

    某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为为50m.设饲养室长为x(m),占地面积为y(m2).

    1. (1) 如图1,问饲养室长x为多少时,占地面积y最大?

    2. (2) 如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大。小敏说:“只要饲养室长比(1)中的长多2m就行了.”小敏的说法正确吗?

  • 22. (2021·通州模拟)

    定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.

    1. (1) 如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,

      ①若AB=CD=1,AB//CD,求对角线BD的长.

      ②若AC⊥BD,求证:AD=CD.

    2. (2) 如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.求AE的长.

  • 23. (2017·绍兴)

    已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.

    1. (1) 如图,若点D在线段BC上,点E在线段AC上.

      ①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°.②求α,β之间的关系式.

    2. (2) 是否存在不同于以上②中的α,β之间的关系式?若存在,请求出这个关系式(求出一个即可);若不存在,说明理由.

  • 24. (2017·绍兴)

    如图1,已知▱ABCD,AB//x轴,AB=6,点A的坐标为(1,-4),点D的坐标为(-3,4),点B在第四象限,点P是▱ABCD边上的一个动点.

     

    1. (1) 若点P在边BC上,PD=CD,求点P的坐标.

    2. (2) 若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x-1上,求点P的坐标.

    3. (3) 若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标(直接写出答案).

微信扫码预览、分享更方便

试卷信息