当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年黑龙江省哈尔滨市香坊区中考数学一模试卷

更新时间:2017-07-07 浏览次数:1373 类型:中考模拟
一、选择题
二、填空题
三、解答题
  • 20. (2020九上·哈尔滨开学考) 先化简,再求代数式 的值,其中x=4sin45°﹣2cos60°.
  • 21. (2017·香坊模拟)

    图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.

    1. (1) 如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;

    2. (2) 在图2中画出一个以线段AC为一条对角线、面积为15的菱形ABCD,且点B和点D均在小正方形的顶点上.

  • 22. (2017·香坊模拟) 我市某中学为了解该校学生对四种国家一级保护动物的喜爱情况,围绕“在丹顶鹤、大熊猫、滇金丝猴、藏羚羊四种国家一级保护动物中,你最喜欢哪一种动物?(必选且只选一种)”这一问题,在全校范围内随机抽取部分同学进行问卷调查.根据调查结果绘制成如下不完整的条形统计图.其中最喜欢丹顶鹤的学生人数占被抽取人数的16%;请你根据以上信息解答下列问题:

    1. (1) 在这次调查中,一共抽取了多少名学生?
    2. (2) 求在被调查的学生中,最喜欢滇金丝猴的学生有多少名?并补全条形统计图;
    3. (3) 如果全校有1200名学生,请你估计全校最喜欢大熊猫的学生有多少名?
  • 23. (2019八上·哈尔滨期中) 在△ABC中,∠C=90°,D是AC的中点,E是AB的中点,作EF⊥BC于F,延长BC至G,使CG=BF,连接CE、DE、DG.
    1. (1) 如图1,求证:四边形CEDG是平行四边形

    2. (2) 如图2,连接EG交AC于点H,若EG⊥AB,请直接写出图2中所有长度等于 GH的线段.

  • 24. (2017·香坊模拟) 某校为美化校园,计划对面积为1800平方米的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400平方米区域的绿化时,甲队比乙队少用4天.
    1. (1) 求甲、乙两工程队每天能完成绿化的面积分别是多少平方米?
    2. (2) 若学校每天付给乙队的绿化费用是0.25万元,每天付给甲队的绿化费用比乙队多60%,要使这次学校付给甲、乙两队的绿化总费用不超过8万元,至少应安排甲队工作多少天?
  • 25. (2017·香坊模拟) 已知,⊙O的两条弦AB、CD相交于点E,
    1. (1) 如图1,若BE=DE,求证: =

    2. (2) 如图2,在(1)的条件下,连接OC,AP为⊙O的直径,PQ为⊙O的弦,且PQ∥AB,求证:∠OCD=∠APQ;

    3. (3) 如图3,在(2)的条件下,连接BD分别与OA、OC交于点G、H,连接DQ,设CD与AP交于点F,

      若PQ=2CF,BH=5GH,DQ=4,求⊙O的半径.

  • 26. (2017·香坊模拟)

    如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x﹣3与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴交于另一点B

    1. (1) 求抛物线的解析式;

    2. (2) 点D是第二象限抛物线上的一个动点,连接AD、BD、CD,当S△ACD= S四边形ACBD时,求D点坐标;

    3. (3) 在(2)的条件下,连接BC,过点D作DE⊥BC,交CB的延长线于点E,点P是第三象限抛物线上的一个动点,点P关于点B的对称点为点Q,连接QE,延长QE与抛物线在A、D之间的部分交于一点F,当∠DEF+∠BPC=∠DBE时,求EF的长.

微信扫码预览、分享更方便

试卷信息