当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年四川省成都市中考数学试卷(a卷)

更新时间:2024-07-12 浏览次数:2231 类型:中考真卷
一、选择题
二、填空题
三、解答题
    1. (1) 计算:| ﹣1|﹣ +2sin45°+( 2
    2. (2) 解不等式组:
  • 16. (2017·成都) 化简求值: ÷(1﹣ ),其中x= ﹣1.
  • 17. (2022九上·浦江期中) 随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.

    1. (1) 本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;
    2. (2) “非常了解”的4人有A1 , A2两名男生,B1 , B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.
  • 18. (2017·成都) 科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.

  • 19. (2017·成都) 如图,在平面直角坐标系xOy中,已知正比例函数y= x的图象与反比例函数y= 的图象交于A(a,﹣2),B两点.

    1. (1) 求反比例函数的表达式和点B的坐标;
    2. (2) P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.
  • 20. (2017·成都) 如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.

    1. (1) 求证:DH是圆O的切线;
    2. (2) 若A为EH的中点,求 的值;
    3. (3) 若EA=EF=1,求圆O的半径.
四、填空题
五、解答题
  • 26. (2017·成都) 随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:

    地铁站

     A

     B

     C

     D

     E

     x(千米)

     8

     9

     10

     11.5

     13

     y1(分钟)

     18

     20

     22

     25

     28

    1. (1) 求y1关于x的函数表达式;
    2. (2) 李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2= x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.
  • 27. (2017·成都) 问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD= ∠BAC=60°,于是 = =

    迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三点在同一条直线上,连接BD.

    1. (1) ①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;
    2. (2) 拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.

      ①证明△CEF是等边三角形;

      ②若AE=5,CE=2,求BF的长.

  • 28. (2017·成都)

    如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4 ,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.

    1. (1) 求抛物线C的函数表达式;

    2. (2) 若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.

    3. (3)

      如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.

微信扫码预览、分享更方便

试卷信息