当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年江苏省南京市玄武区中考数学一模试卷

更新时间:2017-07-07 浏览次数:983 类型:中考模拟
一、选择题
二、填空题)
三、解答题
    1. (1) 解方程组
    2. (2) 解方程 =
  • 19. (2017·玄武模拟) 一个不透明的袋子中,装有2个红球,1个白球,1个黄球,这些球除颜色外都相同.求下列事件的概率:
    1. (1) 搅匀后从中任意摸出1个球,恰好是红球;
    2. (2) 搅匀后从中任意摸出2个球,2个都是红球.
  • 20. (2017·玄武模拟) 某公司在某市五个区投放共享单车供市民使用,投放量的分布及投放后的使用情况统计如下.

    1. (1) 该公司在全市一共投放了万辆共享单车;
    2. (2) 在扇形统计图中,B区所对应扇形的圆心角为°;
    3. (3) 该公司在全市投放的共享单车的使用量占投放量的85%,请计算C区共享单车的使用量并补全条形统计图.
  • 21. (2017·玄武模拟) 如图,在▱ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.

    1. (1) 求证:△AEH≌△CGF;
    2. (2) 求证:四边形EFGH是菱形.
  • 22. (2017·玄武模拟)

    用两种方法证明“直角三角形斜边上的中线等于斜边的一半”.

    已知:如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.

    求证:CD= AB.


    证法1:如图2,在∠ACB的内部作∠BCE=∠B,

    CE与AB相交于点E.

    ∵∠BCE=∠B,

    ∵∠BCE+∠ACE=90°,

    ∴∠B+∠ACE=90°.

    又∵

    ∴∠ACE=∠A.

    ∴EA=EC.

    ∴EA=EB=EC,

    即CE是斜边AB上的中线,且CE= AB.

    又∵CD是斜边AB上的中线,即CD与CE重合,

    ∴CD= AB.

    请把证法1补充完整,并用不同的方法完成证法2.

  • 23. (2023·淮阴模拟) 同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.

    1. (1) 求乙蜡烛剩下的长度y与燃烧时间x的函数表达式;
    2. (2) 求点P的坐标,并说明其实际意义;
    3. (3) 求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.
  • 24. (2017·玄武模拟) 定义:在△ABC中,∠C=30°,我们把∠A的对边与∠C 的对边的比叫做∠A的邻弦,记作thi A,即thi A= = .请解答下列问题:

    已知:在△ABC中,∠C=30°.

    1. (1) 若∠A=45°,求thi A的值;
    2. (2) 若thi A= ,则∠A=°;
    3. (3) 若∠A是锐角,探究thi A与sinA的数量关系.
  • 25. (2019·通州模拟) A厂一月份产值为16万元,因管理不善,二、三月份产值的月平均下降率为x(0<x<1).B厂一月份产值为12万元,二月份产值下降率为x,经过技术革新,三月份产值增长,增长率为2x.三月份A、B两厂产值分别为yA、yB(单位:万元).
    1. (1) 分别写出yA、yB与x的函数表达式;
    2. (2) 当yA=yB时,求x的值;
    3. (3) 当x为何值时,三月份A、B两厂产值的差距最大?最大值是多少万元?
  • 26. (2017·玄武模拟) 如图,在Rt△ABC中,∠A=90°,点D、E分别在AC、BC上,且CD•BC=AC•CE,以E为圆心,DE长为半径作圆,⊙E经过点B,与AB、BC分别交于点F、G.

    1. (1) 求证:AC是⊙E的切线.
    2. (2) 若AF=4,CG=5,求⊙E的半径;
    3. (3) 若Rt△ABC的内切圆圆心为I,则IE=
  • 27. (2017·玄武模拟)

    在△ABC中,D为BC边上一点.

    1. (1) 如图①,在Rt△ABC中,∠C=90°,将△ABC沿着AD折叠,点C落在AB边上.请用直尺和圆规作出点D(不写作法,保留作图痕迹);

    2. (2) 如图②,将△ABC沿着过点D的直线折叠,点C落在AB边上的E处.

      ①若DE⊥AB,垂足为E,请用直尺和圆规作出点D(不写作法,保留作图痕迹);

      ②若AB=4 ,BC=6,∠B=45°,则CD的取值范围是

微信扫码预览、分享更方便

试卷信息