当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年山东省济宁市中考数学试卷

更新时间:2017-07-04 浏览次数:1265 类型:中考真卷
一、选择题
二、填空题
三、解答题
  • 17. (2017·济宁) 为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:

    请根据以上两图解答下列问题:

    1. (1) 该班总人数是
    2. (2) 根据计算,请你补全两个统计图;
    3. (3) 观察补全后的统计图,写出一条你发现的结论.
  • 18. (2017·济宁) 某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).

    设这种双肩包每天的销售利润为w元.

    1. (1) 求w与x之间的函数解析式;
    2. (2) 这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
    3. (3) 如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
  • 19. (2017·济宁) 如图,已知⊙O的直径AB=12,弦AC=10,D是 的中点,过点D作DE⊥AC,交AC的延长线于点E.

    1. (1) 求证:DE是⊙O的切线;
    2. (2) 求AE的长.
  • 20. (2019八下·邳州期中) 实验探究:
    1. (1) 如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.

    2. (2) 将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.

  • 21. (2017·济宁) 已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.

    1. (1) 求m的取值范围,并写出当m取范围内最大整数时函数的解析式;

    2. (2) 题(1)中求得的函数记为C1

      ①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;

      ②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为 的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.

  • 22. (2017·济宁)

    定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.

    例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.

    请你运用所学知识,结合上述材料,解决下列问题:

    在平面直角坐标系中,点M是曲线y= (x>0)上的任意一点,点N是x轴正半轴上的任意一点.

    1. (1)

      如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是( ,3),点N的坐标是( ,0)时,求点P的坐标;

    2. (2)

      如图3,当点M的坐标是(3, ),点N的坐标是(2,0)时,求△MON的自相似点的坐标;

    3. (3) 是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息