当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年湖南省湘西州高考数学模拟试卷

更新时间:2017-07-05 浏览次数:1059 类型:高考模拟
一、选择题
二、填空题
三、解答题
  • 17. (2017·湘西模拟) 如图,经过村庄A有两条夹角60°为的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M,N(异于村庄A),要求PM=PN=MN=2(单位:千米).记∠AMN=θ.

    1. (1) 将AN,AM用含θ的关系式表示出来;
    2. (2) 如何设计(即AN,AM为多长时),使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离AP最大)?
  • 18. (2017·湘西模拟) 某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生

    (I)分别求出按程序框图正确编程运行时输出y的值为i的概率pi(i=1,2,3);

    (II)甲乙两同学依据自己对程序框图的理解,各自编程写出程序重复运行n次后,统计记录输出y的值为i(i=1,2,3)的频数,以下是甲乙所作频数统计表的部分数据.

    甲的频数统计图(部分)

    运行次数n

    输出y的值为1的频数

    输出y的值为2的频数

    输出y的值为3的频数

    30

    14

    6

    10

    2100

    1027

    376

    697

    乙的频数统计图(部分)

    运行次数n

    输出y的值为1的频数

    输出y的值为2的频数

    输出y的值为3的频数

    30

    12

    11

    7

    2100

    1051

    696

    353

    当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合要求的可能系较大;

    (III)将按程序摆图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.

  • 19. (2017·湘西模拟) 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.

    1. (1) 证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
    2. (2) 若面DEF与面ABCD所成二面角的大小为 ,求 的值.
  • 20. (2017·湘西模拟) 一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.

    1. (1) 求椭圆C的方程;
    2. (2) 设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
  • 21. (2017·湘西模拟) 已知函数f(x)=(a+1)lnx﹣x2
    1. (1) 讨论函数f(x)的单调区间;
    2. (2) 若函数f(x)与g(x)在(0,+∞)上的单调性正好相反.

      (Ⅰ)对于 ,不等式 恒成立,求实数t的取值范围;

      (Ⅱ)令h(x)=xg(x)﹣f(x),两正实数x1、x2满足h(x1)+h(x2)+6x1x2=6,证明0<x1+x2≤1.

  • 22. (2017·湘西模拟) 以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为  (t为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.

    (Ⅰ)求曲线C的直角坐标方程;

    (Ⅱ)设直线l与曲线C相交于A、B两点,当α变化时,求|AB|的最小值.

  • 23. (2017·湘西模拟) 综合题。
    1. (1) 设a,b∈R+ , a+b=1,求证 ≥4.
    2. (2) 已知x+2y+3z=1,求x2+y2+z2的最小值.

微信扫码预览、分享更方便

试卷信息