当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年江苏省连云港市中考数学试卷

更新时间:2017-07-06 浏览次数:2839 类型:中考真卷
一、选择题
二、填空题
三、解答题
  • 17. (2017·连云港) 计算:﹣(﹣1)﹣ +(π﹣3.14)0
  • 20. (2017·连云港)

    某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.

    “文明在我身边”摄影比赛成绩统计表

    分数段

    频数

    频率

     60≤x<70

     18

     0.36

     70≤x<80

     17

     c

     80≤x<90

     a

     0.24

     90≤x≤100

     b

     0.06

    合计


     1

    根据以上信息解答下列问题:

    1. (1) 统计表中c的值为;样本成绩的中位数落在分数段中;

    2. (2) 补全频数分布直方图;

    3. (3) 若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?

  • 21. (2020九上·吉州期末) 为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.

    1. (1) 直接写出甲投放的垃圾恰好是A类的概率;

    2. (2) 求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.

  • 22. (2021八上·龙沙期中) 如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.

    1. (1) 判断∠ABE与∠ACD的数量关系,并说明理由;
    2. (2) 求证:过点A、F的直线垂直平分线段BC.
  • 23. (2017·连云港)

    如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D、C.

    1. (1) 若OB=4,求直线AB的函数关系式;

    2. (2) 连接BD,若△ABD的面积是5,求点B的运动路径长.

  • 24. (2019八下·临泽期中) 某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.
    1. (1) 若基地一天的总销售收入为y元,求y与x的函数关系式;
    2. (2) 试求如何分配工人,才能使一天的销售收入最大?并求出最大值.
  • 25. (2017·连云港)

    如图,湿地景区岸边有三个观景台A、B、C,已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.

    1. (1) 求△ABC的面积;

    2. (2) 景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD,试求A、D间的距离.(结果精确到0.1米)

      (参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41, ≈1.414).

  • 26. (2017·连云港)

    如图,已知二次函数y=ax2+bx+3(a≠0)的图象经过点A(3,0),B(4,1),且与y轴交于点C,连接AB、AC、BC.

    1. (1) 求此二次函数的关系式;

    2. (2) 判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M的坐标;

    3. (3) 若将抛物线沿射线BA方向平移,平移后点A、B、C的对应点分别记为点A1、B1、C1 , △A1B1C1的外接圆记为⊙M1 , 是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.

  • 27. (2017·连云港)

    问题呈现:

    (Ⅰ)如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求证:2S四边形EFGH=S矩形ABCD . (S表示面积)

    (Ⅱ)实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB边的平行线,四条平行线分别相交于点A1、B1、C1、D1 , 得到矩形A1B1C1D1

    如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S四边形EFGH=S矩形ABCD+S

    如图3,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH、S矩形ABCD与S 之间的数量关系,并说明理由.

    (Ⅲ)迁移应用:

    请直接应用“实验探究”中发现的结论解答下列问题:

    ⑴如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE>DG,S四边形EFGH=11,HF= ,求EG的长.

    ⑵如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG= ,连接EF、HG,请直接写出四边形EFGH面积的最大值.

微信扫码预览、分享更方便

试卷信息