某校为了了解九年级学生(共450人)的身体素质情况,体育老师对九(1)班的50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制了如下部分频数分布表和部分频数分布直方图.
组别 | 次数x | 频数(人数) |
A | 80≤x<100 | 6 |
B | 100≤x<120 | 8 |
C | 120≤x<140 | m |
D | 140≤x<160 | 18 |
E | 160≤x<180 | 6 |
请结合图表解答下列问题:
如图,在△ABC中,以AB为直径的⊙O分别交AC,BC于点D,E.连接ED,若ED=EC.
②连接OD,当∠A的度数为时,四边形ODEB是菱形.
(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)
已知矩形的面积为S(S为常数,S>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+ )(x>0)
探索研究
我们可以借鉴学习函数的经验,先探索函数y=x+ (x>0)的图象性质.
①列表:
x | … |
|
|
| 1 | 2 | 3 | 4 | … |
y | … |
| m |
| 2 |
|
|
| … |
表中m=;
②描点:如图所示;
③连线:请在图中画出该函数的图象;
④观察图象,写出两条函数的性质;
在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数y=x+ (x>0)的最小值.
y=x+ = + = + ﹣2 • +2 • = +2
∵ ≥0,∴y≥2
∴当 ﹣ =0,即x=1时,y最小值=2
请类比上面配方法,直接写出“问题情境”中的问题答案.
如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE= AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.
①当θ=0°时, =;
②当θ=180°时, =.
拓展探究
试判断:当0°≤θ<360°时, 的大小有无变化?请仅就图2的情形给出证明;
①在旋转过程中,BE的最大值为;
②当△ADE旋转至B、D、E三点共线时,线段CD的长为.
如图1,直线y= x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y= x2+bx+c经过点B,点C的横坐标为4.
如图2,点D在抛物线上,DE∥y轴交直线AB于点E,且四边形DFEG为矩形,设点D的横坐标为x(0<x<4),矩形DFEG的周长为l,求l与x的函数关系式以及l的最大值;