当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年山东省潍坊市中考数学试卷

更新时间:2017-07-24 浏览次数:2542 类型:中考真卷
一、选择题
二、填空题
三、解答题
  • 19. (2017·潍坊) 本校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.

    1. (1) 根据给出的信息,补全两幅统计图;
    2. (2) 该校九年级有600名男生,请估计成绩未达到良好有多少名?
    3. (3) 某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?
  • 20. (2017·潍坊)

    如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶点E的仰角为30°,AB=14米.求居民楼的高度(精确到0.1米,参考数据: ≈1.73)

  • 21. (2017·潍坊) 某蔬菜加工公司先后两批次收购蒜薹(tái)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜苔共用去16万元.
    1. (1) 求两批次购进蒜薹各多少吨?
    2. (2) 公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?
  • 22. (2017·潍坊) 如图,AB为半圆O的直径,AC是⊙O的一条弦,D为 的中点,作DE⊥AC,交AB的延长线于点F,连接DA.

    1. (1) 求证:EF为半圆O的切线;
    2. (2) 若DA=DF=6 ,求阴影区域的面积.(结果保留根号和π)
  • 23. (2020九上·潮南期末) 工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)

    1. (1) 在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
    2. (2) 若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?
  • 24. (2017·潍坊)

    边长为6的等边△ABC中,点D、E分别在AC、BC边上,DE∥AB,EC=2

    1. (1) 如图1,将△DEC沿射线方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N,当CC′多大时,四边形MCND′为菱形?并说明理由.

    2. (2)

      如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′、BE′.边D′E′的中点为P.

      ①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;

      ②连接AP,当AP最大时,求AD′的值.(结果保留根号)

  • 25. (2017·潍坊)

    如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t

    1. (1) 求抛物线的解析式;

    2. (2) 当t何值时,△PFE的面积最大?并求最大值的立方根;

    3. (3) 是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.

微信扫码预览、分享更方便

试卷信息