当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年北京市东城区高考数学二模试卷(理科)

更新时间:2024-07-12 浏览次数:927 类型:高考模拟
一、选择题
二、填空题
三、解答题
  • 15. (2017·东城模拟) 已知函数f(x)= sin2x+a•cos2x(a∈R).

    (Ⅰ)若f( )=2,求a的值;

    (Ⅱ)若f(x)在[ ]上单调递减,求f(x)的最大值.

  • 16. (2017·东城模拟) 小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%﹣60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.

    (Ⅰ)求小明连续两天都遇上拥挤的概率;

    (Ⅱ)设X是小明游览期间遇上舒适的天数,求X的分布列和数学期望;

    (Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)

  • 17. (2017·东城模拟) 如图,在几何体ABCDEF中,平面ADE⊥平面ABCD,四边形ABCD为菱形,且∠DAB=60°,EA=ED=AB=2EF,EF∥AB,M为BC中点.

    (Ⅰ)求证:FM∥平面BDE;

    (Ⅱ)求直线CF与平面BDE所成角的正弦值;

    (Ⅲ)在棱CF上是否存在点G,使BG⊥DE?若存在,求 的值;若不存在,说明理由.

  • 18. (2017·东城模拟) 设函数f(x)=(x2+ax﹣a)•ex(a∈R).

    (Ⅰ)当a=0时,求曲线y=f(x)在点(﹣1,f(﹣1))处的切线方程;

    (Ⅱ)设g(x)=x2﹣x﹣1,若对任意的t∈[0,2],存在s∈[0,2]使得f(s)≥g(t)成立,求a的取值范围.

  • 19. (2017·东城模拟) 已知椭圆C: =1(a>b>0)的短轴长为2 ,右焦点为F(1,0),点M是椭圆C上异于左、右顶点A,B的一点.

    (Ⅰ)求椭圆C的方程;

    (Ⅱ)若直线AM与直线x=2交于点N,线段BN的中点为E.证明:点B关于直线EF的对称点在直线MF上.

  • 20. (2017·东城模拟) 对于n维向量A=(a1 , a2 , …,an),若对任意i∈{1,2,…,n}均有ai=0或ai=1,则称A为n维T向量.对于两个n维T向量A,B,定义d(A,B)=

    (Ⅰ)若A=(1,0,1,0,1),B=(0,1,1,1,0),求d(A,B)的值.

    (Ⅱ)现有一个5维T向量序列:A1 , A2 , A3 , …,若A1=(1,1,1,1,1)且满足:d(Ai , Ai+1)=2,i∈N* . 求证:该序列中不存在5维T向量(0,0,0,0,0).

    (Ⅲ)现有一个12维T向量序列:A1 , A2 , A3 , …,若 且满足:d(Ai , Ai+1)=m,m∈N* , i=1,2,3,…,若存在正整数j使得 ,Aj为12维T向量序列中的项,求出所有的m.

微信扫码预览、分享更方便

试卷信息