当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年黑龙江省大庆市杜尔伯特县中考数学二模试卷 ...

更新时间:2024-07-12 浏览次数:709 类型:中考模拟
一、选择题
二、填空题
三、解答题
  • 20. 已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.
  • 21. (2020九上·麻章期末) 关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.
    1. (1) 求m的取值范围;
    2. (2) 若x1 , x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.
  • 22. (2017·杜尔伯特模拟) 为进一步推广“阳光体育”大课间活动,某中学对已开设的A实心球,B立定跳远,C跑步,D跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:

    1. (1) 请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;
    2. (2) 随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
  • 23. 如果关于x的不等(2m﹣n)x+m﹣5n>0的解集为x< ,试求关于x的不等式mx>n的解集.
  • 24. (2017·杜尔伯特模拟) 如图,在菱形ABCF中,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,EA,延长EA交CD于点G.

    1. (1) 求证:△ACE≌△CBD;
    2. (2) 求∠CGE的度数.
  • 25. (2017·杜尔伯特模拟) 如图,直线y= x+2与双曲线相交于点A(m,3),与x轴交于点C.

    1. (1) 求双曲线解析式;
    2. (2) 点P在x轴上,如果△ACP的面积为3,求点P的坐标.
  • 26. (2017·杜尔伯特模拟)

    某校九年级的小红同学,在自己家附近进行测量一座楼房高度的实践活动.如图,她在山坡坡脚A出测得这座楼房的楼顶B点的仰角为60°,沿山坡往上走到C处再测得B点的仰角为45°.已知OA=200m,此山坡的坡比i= ,且O、A、D在同一条直线上.求:

    1. (1) 楼房OB的高度;

    2. (2) 小红在山坡上走过的距离AC.(计算过程和结果均不取近似值)

  • 27. (2017·杜尔伯特模拟) 如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1 , y1),B(x2 , y2),由勾股定理得AB2=

    |x2﹣x1|2+|y2﹣y1|2 , 所以A,B两点间的距离为:AB=

    我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xOy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2 , 当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2

    1. (1) 问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为
    2. (2) 综合应用:

      如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使∠POA=30°,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.

      ①证明:AB是⊙P的切线;

      ②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙Q的方程;若不存在,说明理由.

  • 28. (2017·杜尔伯特模拟)

    如图,已知二次函数y=ax2+ x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.

    1. (1) 请直接写出二次函数y=ax2+ x+c的表达式;

    2. (2) 判断△ABC的形状,并说明理由;

    3. (3) 若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;

    4. (4) 若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.

微信扫码预览、分享更方便

试卷信息