当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年湖北省孝感市安陆市中考数学模拟试卷(5月份) ...

更新时间:2017-07-28 浏览次数:1162 类型:中考模拟
一、选择题
二、填空题
三、解答题
  • 17. (2017·安陆模拟) 综合题。

    1. (1) (﹣2)1﹣|﹣ |+(3.14﹣π)0+4cos45°

    2. (2) 已知x2﹣2x﹣7=0,求(x﹣2)2+(x+3)(x﹣3)的值.

  • 19. (2017·安陆模拟) 某校为更好地培养学生兴趣,开展“拓展课程走班选课”活动,随机抽查了部分学生,了解他们最喜爱的项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.

    最喜爱的传统文化项目类型频数分布表

    项目类型

    频数

    频率

    书法类

    18

    a

    围棋类

    14

    0.28

    喜剧类

    8

    0.16

    国画类

    b

    0.20

    根据以上信息完成下列问题:

    1. (1) 频数分布表中a=,b=
    2. (2) 补全频数分布直方图;
    3. (3) 若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?
  • 20. (2017·安陆模拟) 去学校食堂就餐,经常会在一个买菜窗口前等待,经调查发现,同学的舒适度指数y与等时间x(分)之间满足反比例函数关系,如下表:

    等待时间x

    1

    2

    5

    10

    20

    舒适度指数y

    100

    50

    20

    10

    5

    已知学生等待时间不超过30分钟

    1. (1) 求y与x的函数关系式,并写出自变量x的取值范围.
    2. (2) 若等待时间8分钟时,求舒适度的值;
    3. (3) 舒适度指数不低于10时,同学才会感到舒适.请说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?
  • 21. (2017·安陆模拟) 已知关于x的方程x2﹣(m+2)x+2m﹣1=0.
    1. (1) 求证:此方程有两个不相等的实数根;
    2. (2) 若抛物线y=x2﹣(m+2)x+2m﹣1=0与x轴有两个交点都在x轴正半轴上,求m的取值范围;
    3. (3) 填空:若x2﹣(m+2)x+2m﹣1=0的两根都大于1,则m的取值范围是
  • 22. (2017·安陆模拟) 如图,在平面直角坐标系中,⊙P经过y轴上一点C,与x轴分别相交于A、B两点,连接BP并延长分别交⊙P、y轴于点D、E,连接DC并延长交x轴于点F.若点F的坐标为(﹣1,0),点D的坐标为(1,6).

    1. (1) 求证:CD=CF;
    2. (2) 判断⊙P与y轴的位置关系,并说明理由;
    3. (3) 求直线BD的解析式.
  • 23. (2017·安陆模拟) 在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(与B、C两点不重合),以AD为边作正方形ADEF,使点E与点B在直线AD的异侧,射线BA与射线CF相交于点G.

    1. (1)

      若点D在线段BC上,如图1.

      ①依题意补全图1;

      ②判断BC与CG的数量关系与位置关系,并加以证明;

    2. (2) 若点D在线段BC的延长线上,且G为CF中点,连接GE,AB= ,则GE的长为 ,并简述求GE长的思路.

  • 24. (2017·安陆模拟)

    如图,直线l:y=x﹣ 与x轴正半轴、y轴负半轴分别相交于A、C两点,抛物线y= x2+bx+c经过点B(﹣1,0)和点C.

    1. (1) 填空:直接写出抛物线的解析式:

    2. (2) 已知点Q是抛物线y= x2+bx+c在第四象限内的一个动点.

      ①如图,连接AQ、CQ,设点Q的横坐标为t,△AQC的面积为S,求S与t的函数关系式,并求出S的最大值;

      ②连接BQ交AC于点D,连接BC,以BD为直径作⊙I,分别交BC、AB于点E、F,连接EF,求线段EF的最小值,并直接写出此时Q点的坐标.


微信扫码预览、分享更方便

试卷信息