收入 x (万元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出 y (万元) | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
根据上表可得回归直线方程 = x+ ,其中 =0.76, =y﹣ x,据此估计,该社区一户收入为 14 万元家庭年支出为( )
f′(1)=2,则a=.
82 79 95 87 乙:95 75 80 90 85现要从甲、乙两位同学中选派一人参加正式比赛,从统计学的角度考虑,你认为选派同学参加合适.
(Ⅰ)求a、b的值;
(Ⅱ)若从成绩较好的第3、4、5组中,按分层抽样的方法抽取6人参加社区志愿者活动,并从中选出2人做负责人,求2人中至少有1人是第四组的概率.
组号 | 分组 | 频数 | 频率 |
第1组 | [50,60] | 5 | 0.05 |
第2组 | [60,70] | a | 0.35 |
第3组 | [70,80] | 30 | b |
第4组 | [80,90] | 20 | 0.20 |
第5组 | [90,100] | 10 | 0.10 |
合计 | 100 | 1.00 |
(Ⅰ) AC⊥BC1;
(Ⅱ) AC1∥平面 B1CD;
(Ⅲ)若 AC=BC=1,AA1=2,求三棱锥DB1BC的体积.
生二胎 | 不生二胎 | 合计 | |
70后 | 30 | 15 | 45 |
80后 | 45 | 10 | 55 |
合计 | 75 | 25 | 100 |
(Ⅰ)以这100个人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中随机抽取3位,记其中生二胎的人数为X,求随机变量X的分布列和数学期望;
(Ⅱ)根据调查数据,是否有90%以上的把握认为“生二胎与年龄有关”,并说明理由.
参考数据:
P(K2>k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(参考公式: ,其中n=a+b+c+d)
(Ⅰ)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数 在[1,2]上是减函数,求实数a的取值范围.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过点E (0,﹣2 ) 的直线l与C相交于P,Q 两点,求△OPQ面积的最大值.
(Ⅰ)求 f( x) 的极值;
(Ⅱ)若a=﹣1,证明:当 x1≠x2 , 且f ( x1 )=f ( x2) 时,x1+x2<0.