(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若∀n∈N* , 都有bn≤bk成立,求正整数k的值.
①该函数为偶函数;
②该函数最小正周期为 ;
③该函数值域为 ;
④若定义区间(a,b)的长度为b﹣a,则该函数单调递增区间长度的最大值为 .
其中正确命题为.
① ;
②函数f(x)的周期为π;
③f(x)在区间 上单调递增;
④f(x)的图象关于点 中心对称
其中正确说法的序号是( )
(Ⅰ)求函数f(x)的解析式及其在[0,π]上的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别是A,B,C的对边,若 ,求∠A的大小.
(Ⅰ)求证:BD∥平面EFG;
(Ⅱ)求直线AB与平面EFG的成角的正弦值;
(Ⅲ)请画出平面EFG与四棱锥的表面的交线,并写出作图的步骤.
如图,AC=2ED,AC∥平面EDB,AC⊥平面BCD,平面ACDE⊥平面ABC.
(Ⅰ)求证:AC∥ED;
(Ⅱ)求证:DC⊥BC;
(Ⅲ)当BC=CD=DE=1时,求二面角A﹣BE﹣D的余弦值;
(Ⅳ)在棱AB上是否存在点P满足EP∥平面BDC;
(Ⅴ)设 =k,是否存在k满足平面ABE⊥平面CBE?若存在求出k值,若不存在说明理由.
5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为x)
组别 | 步数分组 | 频数 |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
(Ⅰ)写出m,n的值,并回答这20名“微信运动”团队成员一天行走步数的中位数落在哪个组别;
(Ⅱ)记C组步数数据的平均数与方差分别为v1 , ,E组步数数据的平均数与方差分别为v2 , ,试分别比较v1与v2 , 与 的大小;(只需写出结论)
(Ⅲ)从上述A,E两个组别的数据中任取2个数据,记这2个数据步数差的绝对值为ξ,求ξ的分布列和数学期望.
5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为x)
组别 | 步数分组 | 频数 |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
(Ⅰ)写出m,n的值,若该“微信运动”团队共有120人,请估计该团队中一天行走步数不少于7500步的人数;
(Ⅱ)记C组步数数据的平均数与方差分别为v1 , ,E组步数数据的平均数与方差分别为v2 , ,试分别比较v1与v2 , 与 的大小;(只需写出结论)
(Ⅲ)从上述A,E两个组别的步数数据中任取2个数据,求这2个数据步数差的绝对值大于3000步的概率.
(Ⅰ)设:在唱到第k张票时,甲,乙两人的得票数分别为xk , yk , N(k)=xk﹣yk , k=1,2,…,11.若下图为根据一次唱票过程绘制的N(k)图,
则根据所给图表,在这次选举中获胜方是谁?y7的值为多少?图中点P提供了什么投票信息?
(Ⅱ)设事件A为“候选人甲比乙恰多3票胜出”,假定每人选甲或乙的概率皆为 ,则事件A发生的概率为多少?
(Ⅲ)若在不了解唱票过程的情况下已知候选人甲比乙3票胜出.则在唱票过程中出现甲乙两人得票数相同情况的概率是多少?
(I)求椭圆C的方程;
(II)若点P为直线x=4上的一个动点,A,B为椭圆的左、右顶点,直线AP,BP分别与椭圆C的另一个交点分别为M,N,求证:直线MN恒过点E(1,0).
(Ⅰ)求椭圆G的标准方程;
(Ⅱ)是否存在直线l,使得△ABF2为等腰直角三角形?若存在,求出直线l的方程;若不存在,请说明理由.
①一定存在某个位置E,两天经过此地的时刻相同
②一定存在某个时刻,两天中在此刻的速度相同
③一定存在某一段路程EF(不含A、B),两天在此段内的平均速度相同.(以上速度不考虑方向)
正确说法的序号是.