当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年山东省临沂市高考数学二模试卷(理科)

更新时间:2017-07-30 浏览次数:805 类型:高考模拟
一、选择题
二、填空题
  • 11. (2017·临沂模拟) 已知圆x2+y2﹣2x﹣8y+1=0的圆心到直线ax﹣y+1=0的距离为1,则a=
  • 12. (2017·临沂模拟) ,则二项式 展开式中x2项的系数为 (用数字作答).
  • 13. (2017·临沂模拟) 阅读如图的程序框图,若运行此程序,则输出S的值为

  • 14. (2017·临沂模拟) 三国时代吴国数学家赵爽所著《周髀算经》中用赵爽弦图给出了勾股定理的绝妙证明,如图是赵爽弦图,图中包含四个全等的勾股形及一个小正方形,分别涂成朱色和黄色,若朱色的勾股形中较大的锐角α为 ,现向该赵爽弦图中随机地投掷一枚飞镖,则飞镖落在黄色的小正方形内的概率为

  • 15. (2017·临沂模拟) 定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)= ,则称函数y=f(x)是[a,b]上的“平均值函数”,x0而是它的一个均值点.

    例如y=|x|是[﹣2,2]上的“平均值函数”,0就是它的均值点.给出以下命题:

    ①函数f(x)=sinx﹣1是[﹣π,π]上的“平均值函数”;

    ②若y=f(x)是[a,b]上的“平均值函数”,则它的均值点x0

    ③若函数f(x)=x2+mx﹣1是[﹣1,1]上的“平均值函数”,则实数m∈(﹣2,0);

    ④若f(x)=lnx是区间[a,b](b>a≥1)上的“平均值函数”,x0是它的一个均值点,则lnx0

    其中的真命题有(写出所有真命题的序号).

三、解答题
  • 16. (2017·临沂模拟) 已知向量 ,若f(x)=m•n.

    (I)求f(x)的单调递增区间;

    (II)已知△ABC的三内角A,B,C对边分别为a,b,c,且a=3,f ,sinC=2sinB,求A,c,b的值.

  • 17. (2017·临沂模拟) 某校的学生文娱团队由理科组和文科组构成,具体数据如表所示:

    组别

    文科

    理科

    性别

    男生

    女生

    男生

    女生

    人数

    3

    1

    3

    2

    学校准备从该文娱团队中选出4人到某社区参加大型公益活动演出,每选出一名男生,给其所在的组记1分;每选出一名女生,给其所在的组记2分,要求被选出的4人中文科组和理科组的学生都有.

    (I)求理科组恰好得4分的概率;

    (II)记文科组的得分为X,求随机变量X的分布列和数学期望EX.

  • 18. (2017·临沂模拟) 如图,已知AB⊥平面ACD,DE∥AB,△ACD是等腰三角形,∠CAD=120°,AD=DE=2AB.

    (I)求证:平面BCE⊥平面CDE;

    (II)求平面BCE与平面ADEB所成锐二面角的余弦值.

  • 19. (2017·临沂模拟) 已知数列{an}的奇数项成等差数列,偶数项成等比数列,且公差和公比都是2,若对满足m+n≤5的任意正整数m,n,均有am+an=am+n成立.

    (I)求数列{an}的通项公式;

    (II)若bn= ,求数列{bn}的前n项和Tn

  • 20. (2017·临沂模拟) 已知函数f(x)=

    (I)求函数f(x)的单调区间;

    (II)若不等式f(x)> 恒成立,求整数k的最大值;

    (III)求证:(1+1×2)•(1+2×3)…(1+n(n×1))>e2n﹣3(n∈N*).

  • 21. (2017·临沂模拟)

    如图,在平面直角坐标系xOy中,椭圆C1 的离心率为 ,抛物线C2:x2=4y的焦点F是C1的一个顶点.

    (I)求椭圆C1的方程;

    (II)过点F且斜率为k的直线l交椭圆C1于另一点D,交抛物线C2于A,B两点,线段DF的中点为M,直线OM交椭圆C1于P,Q两点,记直线OM的斜率为k'.

    (i)求证:k•k'=﹣

    (ii)△PDF的面积为S1 , △QAB的面积为是S2 , 若S1•S2=λk2 , 求实数λ的最大值及取得最大值时直线l的方程.

微信扫码预览、分享更方便

试卷信息