当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

云南省昆明市盘龙区2019届九年级数学中考二模试卷

更新时间:2020-04-02 浏览次数:263 类型:中考模拟
一、单选题
二、填空题
三、解答题
    1. (1) 化简M;
    2. (2) 当a=1时,记此时M的值为f(1)=

      当a=2时,记此时M的值为f(2)=

      当a=3时,记此时M的值为f(3)= ……

      当a=n时,记此时M的值为f(n)=;则f(1)+f(2)+…+f(n)=

    3. (3) 解关于x的不等式组: ≤f(1)+f(2)+f(3)并将解集在数轴上表示出来.
  • 15. (2019·盘龙模拟) 如图,以点B为圆心,适当长为半径画弧,交BA于点D,交BC于点E;分别以点D,E为圆心,大于 DE的长为半径画弧,两弧在∠ABC的内部相交于点F;画射线BF,过点F作FG⊥AB于点G,作FH⊥BC于点H

    求证:BG=BH.

  • 16. (2020·拱墅模拟) 某校七、八年级各有10名同学参加市级数学竞赛,各参赛选手的成绩如下(单位:分):

    七年级:89,92,92,92,93,95,95,96,98,98

    八年级:88,93,93,93,94,94,95,95,97,98

    整理得到如下统计表

    年级

    最高分

    平均分

    中位数

    众数

    方差

    七年级

    98

    94

    a

    m

    7.6

    八年级

    98

    n

    94

    93

    6.6

    根据以上信息,完成下列问题

    1. (1) 填空:a=;m=;n=
    2. (2) 两个年级中,年级成绩更稳定;
    3. (3) 七年级两名最高分选手分别记为:A1 , A2 , 八年级第一、第二名选手分别记为B1 , B2 , 现从这四人中,任意选取两人参加市级经验交流,请用树状图法或列表法求出这两人分别来自不同年级的概率.
  • 17. (2021·郓城模拟) 某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.
    1. (1) 若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?
    2. (2) 若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?
  • 18. (2019·盘龙模拟) 如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.

    1. (1) 求证:PB是⊙O的切线;
    2. (2) 若OC=3,AC=4,求sin∠PAB的值.
  • 19. (2020九上·寻乌期末) 某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量 (千克)与销售单价 (元/千克)之间的函数关系如图所示.

    1. (1) 求 的函数关系式,并写出 的取值范围;
    2. (2) 当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
    3. (3) 某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.
  • 20. (2019·盘龙模拟) 如图1所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.

    1. (1) 证明:四边形OEFG是平行四边形;
    2. (2) 将△OGE绕点O顺时针旋转得到△OMN,如图2所示,连接GM,EN.

      ①若OE= ,OG=1,求 的值;

      ②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)

  • 21. (2020·南通模拟) 如图①已知抛物线y=ax2﹣3ax﹣4a(a<0)的图象与x轴交于A、B两点(A在B的左侧),与y的正半轴交于点C,连结BC,二次函数的对称轴与x轴的交点为E.

    1. (1) 抛物线的对称轴与x轴的交点E坐标为,点A的坐标为
    2. (2) 若以E为圆心的圆与y轴和直线BC都相切,试求出抛物线的解析式;
    3. (3) 在(2)的条件下,如图②Q(m,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,将△CMN沿CN翻折,M的对应点为M′.在图②中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息