当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

辽宁省大连市西岗区2019届九年级上学期数学期末考试试卷

更新时间:2020-04-02 浏览次数:204 类型:期末考试
一、单选题
二、填空题
三、解答题
    1. (1) 解方程:x2+4x﹣5=0
    2. (2) +( 1﹣2cos30°+(2﹣π)0
  • 18. (2019九上·西岗期末) 如图,已知等腰三角形ADC,AD=AC,B是线段DC上的一点,连结AB,且有AB=DB.

    1. (1) 求证:△ADB∽△CDA;
    2. (2) 若DB=2,BC=3,求AD的值.
  • 19. (2019九上·西岗期末) 如图,建筑物的高CD为17.32米,在其楼顶C,测得旗杆底部B的俯角α为60°,旗杆顶部A的仰角β为30°,请你计算旗杆的高度.( ≈1.732,结果精确到0.1米)

  • 20. (2019九上·西岗期末) 某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?

  • 21. (2019九上·西岗期末) 如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2 (k≠0)的图象相交于点B(3,2)、C(﹣1,n).

    1. (1) 求一次函数和反比例函数的解析式;
    2. (2) 根据图象,直接写出y1>y2时x的取值范围.
  • 22. (2019九上·西岗期末) 【发现】x4﹣5x2+4=0是一个一元四次方程.
    1. (1) 【探索】根据该方程的特点,通常用“换元法”解方程:

      设x2=y,那么x4=y2 , 于是原方程可变为.

      解得:y1=1,y2.

      当y=1时,x2=1,∴x=±1;

      当y=时,x2,∴x=

      原方程有4个根,分别是.

    2. (2) 【应用】仿照上面的解题过程,求解方程: .
  • 23. (2019九上·西岗期末) 如图,在△ABC中,∠C=90°,点O为BE上一点,以OB为半径的⊙O交AB于点E,交AC于点D.BD平分∠ABC.

    1. (1) 求证:AC为⊙O切线;
    2. (2) 点F为 的中点,连接BF,若BC= ,BD=8,求⊙O半径及DF的长.
  • 24. (2019九上·西岗期末) 如图1,在四边形ABCD中,AB∥CD,BC⊥CD,过点C作CE⊥AD于点E,CE=4,△CDE沿射线DA平移,当CE经过点B时,运动停止.设点D的平移距离为x,平移后的三角形与四边形ABCD的重合部分面积为y,y与x的函数图象如图2所示:

    1. (1) 图中DE=
    2. (2) 求BC的长;
    3. (3) 求y与x的函数关系式,并直接写出x的取值范围.
  • 25. (2019九上·西岗期末) 阅读下面材料:

    小明遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,AC=BC,在三角形内取一点D,AD=AC,∠CAD=30°,求∠ADB.

    小明通过探究发现,∠DAB=∠DCB=15°,BC=AD,这样就具备了一边一角的图形特征,他果断延长CD至点E,使CE=AB,连接EB,造出全等三角形,使问题得到解决.

    1. (1) 按照小明思路完成解答,求∠ADB;
    2. (2) 参考小明思考问题的方法,解答下列问题:

      如图2,△ABC中,AB=AC,点D、E、F分别为BC、AC、AB上一点,连接DE,延长FE、DF分别交BC、CA延长线于点G、H,若∠DHC=∠EDG=2∠G.

      ①在图中找出与∠DEC相等的角,并加以证明;

      ②若BG=kCD,猜想DE与DG的数量关系并证明.

  • 26. (2019九上·西岗期末) 在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,顶点为D,且过点(2,﹣3a).
    1. (1) 求抛物线的解析式;
    2. (2) 抛物线上是否存在一点P,过点P作PM⊥BD,垂足为点M,PM=2DM?若存在,求点P的坐标;若不存在,说明理由.
    3. (3) 在(2)的条件下,求△PMD的面积.

微信扫码预览、分享更方便

试卷信息