当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年江苏省盐城市响水县中考数学二模试卷

更新时间:2024-07-12 浏览次数:919 类型:中考模拟
一、选择题
二、填空题
三、解答题
  • 17. (2017·响水模拟) 计算:21+4cos45°﹣(π﹣2013)0
  • 19. (2017·响水模拟) 化简再求值: ÷(1﹣ ),其中m= +1,n=1﹣
  • 20. (2017·响水模拟) 某校初三(1)班的同学踊跃为“希望工程”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但班长不小心把墨水滴在统计表上,部分数据看不清楚.根据图表中现有信息解决下列问题:

    捐款

    人数

    0~20元

    21~40元

    41~60元

    61~80元

    6

    81元以上

    4

    1. (1) 全班有多少人捐款?
    2. (2) 如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?
  • 21. (2021九上·甘州期末) 在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).
    1. (1) 请你用画树状图或列表的方法,写出点M所有可能的坐标;
    2. (2) 求点M(x,y)在函数y=﹣ 的图象上的概率.
  • 22. (2020·铁西模拟)

    甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:

    1. (1) 港口A与小岛C之间的距离;

    2. (2) 甲轮船后来的速度.

  • 23. (2017·响水模拟) 已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.

    1. (1) 求证:△AOE≌△COF;
    2. (2) 若∠EOD=30°,求CE的长.
  • 24. (2017·响水模拟) 如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.

    1. (1) 求证:OM=AN;
    2. (2) 若⊙O的半径R=3,PA=9,求OM的长.
  • 25. (2017·响水模拟) 某车间的甲、乙两名工人分别同时生产500只同一型号的零件,他们生产的零件y(只)与生产时间x(分)的函数关系的图象如图所示.根据图象提供的信息解答下列问题:

    1. (1) 甲每分钟生产零件只;乙在提高生产速度之前已生产了零件

      只;

    2. (2) 若乙提高速度后,乙的生产速度是甲的2倍,请分别求出甲、乙两人生产全过程中,生产的零件y(只)与生产时间x(分)的函数关系式;
    3. (3) 当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产.
  • 26. (2017·响水模拟)

    如图,在平面直角坐标系中,二次函数y=x2+bx+c的对称轴为经过点(1,0)的直线,其图象与x轴交于点A、B,且过点C(0,﹣3),其顶点为D.

    1. (1) 求这个二次函数的解析式及顶点坐标;

    2. (2) 在y轴上找一点P(点P与点C不重合),使得∠APD=90°,求点P的坐标;

    3. (3) 在(2)的条件下,将△APD沿直线AD翻折得到△AQD,求点Q的坐标.

  • 27. (2017·响水模拟)

    一透明的敞口正方体容器ABCD﹣A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示).探究 如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.


    解决问题:

    1. (1) CQ与BE的位置关系是,BQ的长是dm;

    2. (2) 求液体的体积;(参考算法:直棱柱体积V=底面积SBCQ×高AB)

    3. (3) 求α的度数.(注:sin49°=cos41°= ,tan37°=

    4. (4) 延伸:在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3


微信扫码预览、分享更方便

试卷信息