一个按正弦规律变化的交变电流的图象如图所示,由图可知( )
①该交变电流的频率为0.2Hz;
②该交变电流的有效值为14.1A;
③该交变电流的瞬时值表达式为i=20sin0.02tA;
④t= 时刻,该交变电流大小与其有效值相等.
如图所示,交流电源电压u=20sin(100πt)V,电路中电阻R=10Ω.则如图电路中理想电流表和理想电压表的读数分别为( )
质量为ma=1kg,mb=2kg的小球在光滑的水平面上发生碰撞,碰撞前后两球的位移﹣时间图象如图所示,则可知碰撞属于( )
人的质量m=60kg,船的质量M=240kg,若船用缆绳固定,船离岸1.5m时,人恰好可以跃上岸.若撤去缆绳,如图所示,人要安全跃上岸,船离岸至多为多远?(不计水的阻力,两次人消耗的能量相等,两次从离开船到跃上岸所用的时间相等)( )
如图是通过街头变压器降压给用户供电的示意图.输入电压是市区电网的电压,负载变化时输入电压不会有大的波动.输出电压通过输电线送给用户,两条输电线总电阻用R0表示.当负载增加时,则( )
一个质量为 M的长木板静止在光滑水平面上,一颗质量为m的子弹,以水平速度v0射入木块并留在木块中,在此过程中,子弹射入木块的深度为d,木块运动的距离为s,木块对子弹的平均阻力为f,则对于子弹和长木板组成的系统,下列说法正确的是( )
在橄榄球比赛中,一个95kg的橄榄球前锋以5m/s的速度跑动,想穿越防守队员到底线触地得分.就在他刚要到底线时,迎面撞上了对
方两名均为75kg的队员,一个速度为2m/s,另一个为4m/s,然后他们就扭在了一起.①他们碰撞后的共同速率是;
②在右面方框中标出碰撞后他们动量的方向,并说明这名前锋能否得分:(能或不能)
如图1所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系:
先安装好实验装置,在地上铺一张白纸,白纸上铺放复写纸,记下重垂线所指的位置O.
接下来的实验步骤如下:
步骤1:不放小球2,让小球1从斜槽上A点由静止滚下,并落在地面上.重复多次,用尽可能小的圆,把小球的所有落点圈在里面,其圆心就是小球落点的平均位置;
步骤2:把小球2放在斜槽前端边缘位置B,让小球1从A点由静止滚下,使它们碰撞.重复多次,并使用与步骤1同样的方法分别标出碰撞后两小球落点的平均位置;
步骤3:用刻度尺分别测量三个落地点的平均位置M、P、N离O点的距离,即线段OM、OP、ON的长度.
完成上述实验后,某实验小组对上述装置进行了改造,如图2所示.在水平槽末端与水平地面间放置了一个斜面,斜面的顶点与水平槽等高且无缝连接.使小球1仍从斜槽上A点由静止滚下,重复实验步骤1和2的操作,得到两球落在斜面上的平均落点M′、P′、N′.用刻度尺测量斜面顶点到M′、P′、N′三点的距离分别为l1、l2、l3 . 则验证两球碰撞过程中动量守恒的表达式为(用所测物理量的字母表示).
均匀导线制成的单匝正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m.将其置于磁感强度为B的水平匀强磁场上方h处,如图所示.线框由静止自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界平行.当cd边刚进入磁场时:求:
如图所示,质量M=0.040kg的靶盒A静止在光滑水平导轨上的O点,水平轻质弹簧一端栓在固定挡板P上,另一端与靶盒A连接.Q处有一固定的发射器B,它可以瞄准靶盒发射一颗水平速度为v0=50m/s,质量m=0.010kg的弹丸,当弹丸打入靶盒A后,便留在盒内,碰撞时间极短.不计空气阻力.求:
如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m的小球以水平速度v0飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A可视为质点,求