当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

四川省眉山市2016-2017学年高二下学期理数期末考试试卷

更新时间:2017-08-26 浏览次数:1230 类型:期末考试
一、选择题
二、填空题
三、解答题
  • 17. (2017高二下·眉山期末) 为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满分100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.

    分组

    频数

    频率

    [50,60)

     5

     0.05

    [60,70)

     a

     0.20

    [70,80)

     35

     b

    [80,90)

     25

     0.25

    [90,100)

     15

     0.15

    合计

     100

     1.00

    (I)求a,b的值及随机抽取一考生恰为优秀生的概率;

    (Ⅱ)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;

    (Ⅲ)在第(Ⅱ)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在[90,100]的概率.

  • 18. (2017高二下·眉山期末) 已知(2x﹣ 5

    (Ⅰ)求展开式中含 项的系数

    (Ⅱ)设(2x﹣ 5的展开式中前三项的二项式系数之和为M,(1+ax)6的展开式中各项系数之和为N,若4M=N,求实数a的值.

  • 19. (2017高二下·眉山期末) 2015年12月,京津冀等地数城市指数“爆表”,北方此轮污染为2015年以来最严重的污染过程.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:

    时间

    星期一

    星期二

    星期三

    星期四

    星期五

    星期六

    星期七

    车流量x(万辆)

    1

    2

    3

    4

    5

    6

    7

    PM2.5的浓度y(微克/立方米)

    28

    30

    35

    41

    49

    56

    62

    (Ⅰ)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;

    (Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;

    (ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)

    参考公式:回归直线的方程是 = x+ ,其中 = =

  • 20. (2017高二下·眉山期末) 随着智能手机的发展,微信越来越成为人们交流的一种方式.某机构对使用微信交流的态度进行调查,随机调查了 50 人,他们年龄的频数分布及对使用微信交流赞成人数如表.

    年龄(岁)

    [15,25)

    [25,35)

    [35,45)

    [45,55)

    [55,65)

    [65,75)

    频数

    5

    10

    15

    10

    5

    5

    赞成人数

    5

    10

    12

    7

    2

    1

    (I)由以上统计数据填写下面 2×2 列联表,并判断是否有99%的把握认为年龄45岁为分界点对使用微信交流的态度有差异;

    年龄不低于45岁的人

    年龄低于45岁的人

    合计

    赞成

    不赞成

    合计

    (Ⅱ)若对年龄在[55,65),[65,75)的被调查人中随机抽取两人进行追踪调查,记选中的4人中赞成使用微信交流的人数为X,求随机变量X的分布列和数学期望

    参考公式:K2= ,其中n=a+b+c+d

    参考数据:

    P(K2≥k0

    0.050

    0.010

    0.001

    k0

    3.841

    6.635

    10.828

  • 21. (2017高二下·眉山期末) 已知f(x)=ex﹣ax2 , g(x)是f(x)的导函数.

    (I)求g(x)的极值;

    (II)证明:对任意实数x∈R,都有f′(x)≥x﹣2ax+1恒成立:

    (Ⅲ)若f(x)≥x+1在x≥0时恒成立,求实数a的取值范围.

  • 22. (2017高二下·眉山期末) 设函数f(x)=x2+bln(x+1),其中b≠0.
    1. (1) 当b=1时,求曲线y=f(x)在点(0,0)处的切线方程;
    2. (2) 讨论函数f(x)的单调性;
    3. (3) 当n∈N* , 且n≥2时证明不等式:ln[( +1)( +1)…( +1)]+ + +…+

微信扫码预览、分享更方便

试卷信息