当前位置: 初中数学 /沪科版(2024) /七年级上册(2024) /第3章 一次方程与方程组 /3.3 一元一次方程的应用
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

沪科版七上数学3.2一元一次方程的应用课时作业(1)

更新时间:2021-05-20 浏览次数:186 类型:同步测试
一、选择题
  • 1. 程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x人,依题意列方程得(   )
    A . +3(100﹣x)=100 B . ﹣3(100﹣x)=100 C . 3x+ =100 D . 3x﹣ =100
  • 2. 一学生从家去学校每小时走5千米,按原路返回时,每小时走4千米,结果返回的时间比去的时间多用10分钟,设去学校所用的时间为x小时,则符合题意列出的方程是(   )
    A . 5x=4(x+ B . 5x=4(x﹣ C . 5(x﹣ )=4x D . 5(x+ )=4x
  • 3. (3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有(  )

    A . 17人 B . 21人 C . 25人 D . 37人
  • 4. (2019七上·绥滨期中) A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是(   )
    A . 2或2.5 B . 2或10 C . 10或12.5 D . 2或12.5
  • 5. 已知一个由50个偶数排成的数阵.用如图所示的框去框住四个数,并求出这四个数的和.在下列给出备选答案中,有可能是这四个数的和的是(  )

    A . 80 B . 148 C . 172 D . 220
  • 6. 如图,水平桌面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度为别为40公分,50公分,今将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,求隔板抽出后水面静止时,箱内的水面高度为多少公分(   )

    A . 43 B . 44 C . 45 D . 46
  • 7. 如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为(   )

    A . 10克 B . 15克 C . 20克 D . 25克
  • 8. 医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是(    )

    住院医疗费(元)

    报销率(%)

    不超过500元的部分

    0

    超过500~1000元的部分

    60

    超过1000~3000元的部分

    80

    ……


    A . 1000元 B . 1250元 C . 1500元 D . 2000元
二、填空题
  • 9. 明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)

  • 10. 小慧在一张日历的一横排上圈了连续的四个数,它们的和为22,这四个数中最小的为 

  • 11. (2021七上·天门月考) 七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人,可列方程为

  • 12. 某人登泰山,上山的速度是4千米/时,下山的速度是6千米/时,此人在来回过程中的平均速度为千米/时.
  • 13. 如图,将一条长为60铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1︰2︰3,则折痕对应的刻度有种可能.

  • 14.

    实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm).现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm.

三、解答题
  • 15. 为了防控冬季呼吸道疾病,我校积极进行校园环境消毒工作,购买了甲、乙两种消毒液共100瓶,其中甲种每瓶6元,乙种每瓶9元,如果购买这两种消毒液共花去780元,求甲、乙两种消毒液各购买了多少瓶?
  • 16. 少先队从夏令营到学校,先下山再走平路,一队员骑自行车以每小时12千米的速度下山,以每小时9千米的速度走平路,到学校共用了55分钟,回来时,通过平路的速度不变,但以每小时6千米的速度上山,回到营地共花去了70分钟的时间,问夏令营到学校多少千米?
  • 17. “绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?
  • 18. 一列火车匀速行驶,经过一条长300m的隧道需要20s的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?若能,火车的长度是多少?若不能,请说明理由
  • 19. 甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的 ,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.
    1. (1) 求乙骑自行车的速度;
    2. (2) 当甲到达学校时,乙同学离学校还有多远?
  • 20. 联想中学本学期前三周每周都组织初三年级学生进行一次体育活动,全年级400名学生每人每次都只参加球类或田径类中一个项目的活动.假设每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动.
    1. (1) 如果第一次与第二次参加球类活动的学生人数相等,那么第一次参加球类活动的学生应有多少名?
    2. (2) 如果第三次参加球类活动的学生不少于200名,那么第一次参加球类活动的学生最少有多少名?

微信扫码预览、分享更方便

试卷信息