当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市延庆县2016-2017学年八年级下学期数学期末考试试...

更新时间:2024-07-12 浏览次数:398 类型:期末考试
一、选择题
二、填空题
三、解答题
    1. (1) x2+4x﹣5=0.
    2. (2) 3x2+2x﹣1=0.
  • 15. (2017八下·延庆期末) 已知:如图,矩形ABCD,点E是BC上一点,连接AE,AF平分∠EAD交BC于F.

    求证:AE=EF.

  • 16. (2017八下·延庆期末) 已知关于x的一元二次方程x2﹣4x+2﹣k=0有实数根,
    1. (1) 求k的取值范围;
    2. (2) 若k为负整数,且方程两个根均为整数,求出它的根.
  • 17. (2017八下·延庆期末) 已知:如图,在平行四边形ABCD中,延长CB至E,延长AD至F,使得BE=DF,连接EF与对角线AC交于点O.求证:OE=OF.

  • 18. (2017八下·延庆期末) 2017年6月17日北京国际自行车大会召开,来自世界各地的4000多名骑游爱好者齐聚夏都延庆.各种自行车赛事也带动了延庆的骑游产业.据调查,延庆区某骑游公司每月的租赁自行车数的增长率相同,今年四月份的骑游人数约为9000人,六月份的骑游人数约为16000人,求该骑游公司租赁自行车数的月平均增长率(精确到0.01).
  • 19. (2017八下·延庆期末) 设函数y= 与y=2x+1的图象的交点坐标为(a,b),求 的值.
  • 20. (2017八下·延庆期末) 如图,在△ABC中,∠ACB=90°,点D是AB的中点,过点D作DE⊥AC于点E,

    延长DE到点F,使得EF=DE,连接AF,CF.

    1. (1) 根据题意,补全图形;
    2. (2) 求证:四边形ADCF是菱形;
    3. (3) 若AB=8,∠BAC=30°,求菱形ADCF的面积.
  • 21. (2017八下·延庆期末) 尺规作图

    已知:如图,∠MAB=90°及线段AB.

    求作:正方形ABCD.

    要求:

    1. (1) 保留作图痕迹,不写做法,作出一个满足条件的正方形即可;
    2. (2) 写出你作图的依据.
  • 22. (2017八下·延庆期末) 从共享单车,共享汽车等共享出行到共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速的普及,根据国家信息中心发布的中国分享经济发展报告2017显示,参与共享经济活动超6 亿人,比上一年增加约1亿人.
    1. (1) 为获得北京市市民参与共享经济活动信息,下列调查方式中比较合理的是(   );
      A . 对某学校的全体同学进行问卷调查 B . 对某小区的住户进行问卷调查 C . 在全市里的不同区县,选取部分市民进行问卷调查
    2. (2) 调查小组随机调查了延庆区市民骑共享单车情况,某社区年龄在12~36岁的人有1000人,从中随机抽取了100人,统计了他们骑共享单车的人数,并绘制了如下不完整的统计图表.如图所示.

      骑共享单车的人数统计表

      年龄段(岁)

      频数

      频率

      12≤x<16

      2

      0.02

      16≤x<20

      3

      0.03

      20≤x<24

      15

      a

      24≤x<28

      25

      0.25

      28≤x<32

      b

      0.30

      32≤x<36

      25

      0.25

      根据以上信息解答下列问题:

      ①统计表中的a=;b=

      ②补全频数分布直方图

      ③试估计这个社区年龄在20岁到32岁(含20岁,不含32岁)骑共享单车的人有人?

  • 23. (2017八下·延庆期末) 在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= 的一个交点为P(2,m),与x轴、y轴分别交于点A,B.
    1. (1) 求m的值;
    2. (2) 若S△AOP=2S△AOB , 求k的值.
  • 24. (2017八下·延庆期末) 2020年冬奥会将在延庆召开,延庆区某中学响应区团委的号召,组织学生参加“我是奥运小志愿者”活动,志愿者可以到“八达岭长城”、“世葡园”、“龙庆峡”、“百里画廊”四个景区之一参加活动.晓明对“八达岭长城”和“百里画廊”最感兴趣,他将四个景区编号为A、B、C、D,并写在四张卡片上(除编号和内容不同之外,其余完全相同),他将卡片背面朝上,洗匀放好,从中随机抽取两张,请用列表或是画树状图的方法,求抽到的两张卡片恰好是“八达岭长城”,“百里画廊”的概率.(说明:这四张卡片分别用它的编号A、B、C、D表示)

  • 25. (2017八下·延庆期末) 已知矩形的面积为1,设该矩形的长为x,周长为y,小彬借鉴以前研究函数的经验,对函数y随自变量x的变化进行了探究;以下是小彬的探究过程:
    1. (1) 结合问题情境分析:

      ①y与x的函数表达式为;②自变量x的取值范围是

    2. (2) 下表是y与x的几组对应值.

      x

      1

      2

      3

      4

      y

      5

      4

      m

      ①写出m的值;

      ②画出函数图象;

      ③观察图象,写出该函数两条不同类型的性质.

  • 26. (2017八下·延庆期末) 已知:正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,连接EC,AG.
    1. (1) 当点E在正方形ABCD内部时,

      ①根依题意,在图1中补全图形;

      ②判断AG与CE的数量关系与位置关系并写出证明思路.

    2. (2) 当点B,D,G在一条直线时,若AD=4,DG=2 ,求CE的长.(可在备用图中画图)

  • 27. (2017八下·延庆期末) 对于点P(x,y),规定x+y=a,那么就把a叫点P的亲和数.例如:若P(2,3),则2+3=5,那么5叫P的亲和数.
    1. (1) 在平面直角坐标系中,已知,点A(﹣2,6)

      ①B(1,3),C(3,2),D(2,2),与点A的亲和数相等的点

      ②若点E在直线y=x+6上,且与点A的亲和数相同,则点E的坐标是

    2. (2) 如图点P是矩形GHMN边上的任意点,且点H(2,3),N(﹣2,﹣3),点Q是直线y=﹣x+b上的任意点,若存在两点P、Q的亲和数相同,那么求b的取值范围?

微信扫码预览、分享更方便

试卷信息