当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省盐城市建湖县2019届九年级下学期数学期中考试试卷

更新时间:2020-04-26 浏览次数:134 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 19. (2024·澧县模拟) 先化简,再求值: ,其中x为方程 的根.
  • 20. (2019九下·建湖期中) 校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理;

    看法

    频数

    频率

    赞成

    5

    无所谓

    0.1

    反对

    40

    0.8

    1. (1) 本次调查共调查了人;(直接填空)
    2. (2) 请把整理的不完整图表补充完整;
    3. (3) 若该校有3000名学生,请您估计该校持“反对”态度的学生人数.
  • 21. (2020·抚州模拟) 在一个不透明的口袋里装有分别标有数字-3、-1、0、2的四个小球,除数字不同外,小球没有任何区别,每次试验先搅拌均匀.
    1. (1) 从中任取一球,将球上的数字记为a,则关于x的元二次方程x2-2x-a+1=0有实数根的概率
    2. (2) 从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第三象限内的概率.
  • 22. (2019九下·建湖期中) 如图,在△ABC中,∠BAC=90°.

    1. (1) 利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).

      ①作BC的垂直平分线EF,交AB、BC,分别于点E、F;

      ②在射线EF上取一点D(异于点E),使∠DBC=∠EBC;

      ③连接CE、CD、BD.

    2. (2) 判定四边形CEBD的形状,并说明你的理由;
    3. (3) 若AC=5,AB=12,求EF的长.
  • 23. (2019九下·建湖期中) 如图,点D为⊙O上一点,点C在直径AB的延长线上,且∠COD=2∠BDC,过点A作⊙O的切线,交CD的延长线于点E.

    1. (1) 判定直线CD与⊙O的位置关系,并说明你的理由;
    2. (2) 若CB=4,CD=8,求ED的长.
  • 24. (2019九下·建湖期中) 金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高.他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端 的仰角为60°.已知升旗台的高度BE为1米,点 距地面的高度CD为3米,台阶CF的坡角为30°,且点E,F,D在同一条直线上.求旗杆AB的高.(计算结果精确到0.1米,参考数据:

  • 25. (2023八下·安达期末) 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.
    1. (1) 甲乙两种图书的售价分别为每本多少元?
    2. (2) 书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)
  • 26. (2019九下·建湖期中) 已知,在△ABC中,以△ABC的两边BC,AC为斜边向外测作Rt△BCD和Rt△ACE,使∠CAE=∠CBD,取△ABC边AB的中点M,连接ME,MD.

    特例感知:

    1. (1) 如图1,若AC=BC,∠ACB=60°,∠CAE=∠CBD=45°,取AC,BC的中点F,G,连接MF,MG,EF,DG,则ME与MD的数量关系为,∠EMD=
    2. (2) 如图2,若∠ACB=90°,∠CAE=∠CBD=60°,取AC,BC的中点F,G,连接MF,MG,EF,DG,请猜想ME与MD的数量关系以及∠EMD的度数,并给出证明;

      类比探究:

    3. (3) 如图3,当△ABC是任意三角形,∠CAE=∠CBD=α时,连接DE,请猜想△DEM的形状以及∠EMD与α的数量关系,并说明理由.
  • 27. (2019九下·建湖期中) 如图,抛物线y=ax2+4x+c与x轴交于A、B两点,交y轴交于点C,直线y=-x+5经过点B、C.

    1. (1) 求抛物线的表达式;
    2. (2) 点D(1,0),点P为对称轴上一动点,连接BP、CP.

      ①若∠CPB=90°,求点P的坐标;

      ②点Q为抛物线上一动点,若以C、D、P、Q为顶点的四边形是平行四边形,求P的坐标.

微信扫码预览、分享更方便

试卷信息